Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(7): 5216-5232, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38527911

RESUMO

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) protein. This epithelial anion channel regulates the active transport of chloride and bicarbonate ions across membranes. Mutations result in reduced surface expression of CFTR channels with impaired functionality. Correctors are small molecules that support the trafficking of CFTR to increase its membrane expression. Such correctors can have different mechanisms of action. Combinations may result in a further improved therapeutic benefit. We describe the identification and optimization of a new pyrazolol3,4-bl pyridine-6-carboxylic acid series with high potency and efficacy in rescuing CFTR from the cell surface. Investigations showed that carboxylic acid group replacement with acylsulfonamides and acylsulfonylureas improved ADMET and PK properties, leading to the discovery of the structurally novel co-corrector GLPG2737. The addition of GLPG2737 to the combination of the potentiator GLPG1837 and C1 corrector 4 led to an 8-fold increase in the F508del CFTR activity.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mutação , Membrana Celular/metabolismo , Ácidos Carboxílicos/uso terapêutico , Benzodioxóis/farmacologia , Aminopiridinas/uso terapêutico
2.
Eur Respir J ; 60(1)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34916262

RESUMO

RATIONALE: The majority of chronic obstructive pulmonary disease (COPD) patients have chronic bronchitis, for which specific therapies are unavailable. Acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction is observed in chronic bronchitis, but has not been proven in a controlled animal model with airway disease. Furthermore, the potential of CFTR as a therapeutic target has not been tested in vivo, given limitations to rodent models of COPD. Ferrets exhibit cystic fibrosis-related lung pathology when CFTR is absent and COPD with bronchitis following cigarette smoke exposure. OBJECTIVES: To evaluate CFTR dysfunction induced by smoking and test its pharmacological reversal by a novel CFTR potentiator, GLPG2196, in a ferret model of COPD with chronic bronchitis. METHODS: Ferrets were exposed for 6 months to cigarette smoke to induce COPD and chronic bronchitis and then treated with enteral GLPG2196 once daily for 1 month. Electrophysiological measurements of ion transport and CFTR function, assessment of mucociliary function by one-micron optical coherence tomography imaging and particle-tracking microrheology, microcomputed tomography imaging, histopathological analysis and quantification of CFTR protein and mRNA expression were used to evaluate mechanistic and pathophysiological changes. MEASUREMENTS AND MAIN RESULTS: Following cigarette smoke exposure, ferrets exhibited CFTR dysfunction, increased mucus viscosity, delayed mucociliary clearance, airway wall thickening and airway epithelial hypertrophy. In COPD ferrets, GLPG2196 treatment reversed CFTR dysfunction, increased mucus transport by decreasing mucus viscosity, and reduced bronchial wall thickening and airway epithelial hypertrophy. CONCLUSIONS: The pharmacologic reversal of acquired CFTR dysfunction is beneficial against pathological features of chronic bronchitis in a COPD ferret model.


Assuntos
Bronquite Crônica , Doença Pulmonar Obstrutiva Crônica , Animais , Bronquite Crônica/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Furões/metabolismo , Hipertrofia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Microtomografia por Raio-X
3.
Front Mol Biosci ; 8: 698358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604301

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have transformed the treatment of cystic fibrosis (CF) by targeting the basis of the disease. In particular, treatment regimen consisting of multiple compounds with complementary mechanisms of action have been shown to result in optimal efficacy. Here, we assessed the efficacy of combinations of the CFTR modulators ABBV/GLPG-2222, GLPG/ABBV-2737 and ABBV/GLPG-2451, and compared it to VX-770/VX-809 in 28 organoid lines heterozygous for F508del allele and a class I mutation and seven homozygous F508del organoid lines. The combination ABBV/GLPG-2222/ABBV-2737/ABBV/GLPG-2451 showed increased efficacy over VX-770/VX-809 for most organoids, despite considerable variation in efficacy between the different organoid cultures. These differences in CFTR restoration between organoids with comparable genotypes underline the relevance of continuing to optimize the ABBV/GLPG-Triple therapy, as well as the in vitro characterization of efficacy in clinically relevant models.

5.
Am J Respir Cell Mol Biol ; 64(5): 604-616, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33616476

RESUMO

Premature-termination codons (PTCs) in CFTR (cystic fibrosis [CF] transmembrane conductance regulator) result in nonfunctional CFTR protein and are the proximate cause of ∼11% of CF-causing alleles, for which no treatments exist. The CFTR corrector lumacaftor and the potentiator ivacaftor improve CFTR function with terminal PTC mutations and enhance the effect of readthrough agents. Novel correctors GLPG2222 (corrector 1 [C1]), GLPG3221 (corrector 2 [C2]), and potentiator GLPG1837 compare favorably with lumacaftor and ivacaftor in vitro. Here, we evaluated the effect of correctors C1a and C2a (derivatives of C1 and C2) and GLPG1837 alone or in combination with the readthrough compound G418 on CFTR function using heterologous Fischer rat thyroid (FRT) cells, the genetically engineered human bronchial epithelial (HBE) 16HBE14o- cell lines, and primary human cells with PTC mutations. In FRT lines pretreated with G418, GLPG1837 elicited dose-dependent increases in CFTR activity that exceeded those from ivacaftor in FRT-W1282X and FRT-R1162X cells. A three-mechanism strategy consisting of G418, GLPG1837, and two correctors (C1a + C2a) yielded the greatest functional improvements in FRT and 16HBE14o- PTC variants, noting that correction and potentiation without readthrough was sufficient to stimulate CFTR activity for W1282X cells. GLPG1837 + C1a + C2a restored substantial function in G542X/F508del HBE cells and restored even more function for W1282X/F508del cells, largely because of the corrector/potentiator effect, with no additional benefit from G418. In G542X/R553X or R1162X/R1162X organoids, enhanced forskolin-induced swelling was observed with G418 + GLPG1837 + C1a + C2a, although GLPG1837 + C1a + C2a alone was sufficient to improve forskolin-induced swelling in W1282X/W1282X organoids. Combination of CFTR correctors, potentiators, and readthrough compounds augments the functional repair of CFTR nonsense mutations, indicating the potential for novel correctors and potentiators to restore function to truncated W1282X CFTR.


Assuntos
Benzoatos/farmacologia , Benzopiranos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Células Epiteliais/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Piranos/farmacologia , Pirazóis/farmacologia , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Animais , Benzodioxóis/farmacologia , Linhagem Celular , Cloretos/metabolismo , Códon sem Sentido , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/agonistas , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Células Epiteliais/metabolismo , Humanos , Transporte de Íons/efeitos dos fármacos , Quinolonas/farmacologia , Ratos , Recuperação de Função Fisiológica , Células Epiteliais da Tireoide/efeitos dos fármacos , Células Epiteliais da Tireoide/metabolismo
6.
J Med Chem ; 64(1): 343-353, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33399458

RESUMO

Cystic fibrosis (CF) is a life-threatening recessive genetic disease caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR). With the discovery of Ivacaftor and Lumacaftor, it has been shown that administration of one or more small molecules can partially restore the CFTR function. Correctors are small molecules that enhance the amount of CFTR on the cell surface, while potentiators improve the gating function of the CFTR channel. Herein, we describe the discovery and optimization of a novel potentiator series. Scaffold hopping, focusing on retaining the different intramolecular contacts, was crucial in the whole discovery process to identify a novel series devoid of genotoxic liabilities. From this series, the clinical candidate GLPG2451 was selected based on its pharmacokinetic properties, allowing QD dosing and based on its low CYP induction potential.


Assuntos
Fibrose Cística/tratamento farmacológico , Descoberta de Drogas , Piridinas/farmacologia , Piridinas/uso terapêutico , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Piridinas/química , Piridinas/farmacocinética , Ratos
7.
J Med Chem ; 63(22): 13526-13545, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32902984

RESUMO

GPR84 is a medium chain free fatty acid-binding G-protein-coupled receptor associated with inflammatory and fibrotic diseases. As the only reported antagonist of GPR84 (PBI-4050) that displays relatively low potency and selectivity, a clear need exists for an improved modulator. Structural optimization of GPR84 antagonist hit 1, identified through high-throughput screening, led to the identification of potent and selective GPR84 inhibitor GLPG1205 (36). Compared with the initial hit, 36 showed improved potency in a guanosine 5'-O-[γ-thio]triphosphate assay, exhibited metabolic stability, and lacked activity against phosphodiesterase-4. This novel pharmacological tool allowed investigation of the therapeutic potential of GPR84 inhibition. At once-daily doses of 3 and 10 mg/kg, GLPG1205 reduced disease activity index score and neutrophil infiltration in a mouse dextran sodium sulfate-induced chronic inflammatory bowel disease model, with efficacy similar to positive-control compound sulfasalazine. The drug discovery steps leading to GLPG1205 identification, currently under phase II clinical investigation, are described herein.


Assuntos
Descoberta de Drogas/métodos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Acetatos/química , Acetatos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Células CACO-2 , Células Cultivadas , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley
8.
J Cyst Fibros ; 19(2): 292-298, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31594690

RESUMO

BACKGROUND: Triple combinations of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulators demonstrate enhanced clinical efficacy in CF patients with F508del mutation, compared with modest effects of dual combinations. GLPG2737 was developed as a novel corrector for triple combination therapy. METHODS: This multicenter, randomized, double-blind, placebo-controlled, phase 2a study evaluated GLPG2737 in F508del homozygous subjects who had been receiving lumacaftor 400mg/ivacaftor 250mg for ≥12weeks. The primary outcome was change from baseline in sweat chloride concentration. Other outcomes included assessment of pulmonary function, respiratory symptoms, safety, tolerability, and pharmacokinetics. RESULTS: Between November 2017 and April 2018, 22 subjects were enrolled and randomized to oral GLPG2737 (75mg; n=14) or placebo (n=8) capsules twice daily for 28days. A significant decrease from baseline in mean sweat chloride concentration occurred at day 28 for GLPG2737 versus placebo (least-squares-mean difference-19.6mmol/L [95% confidence interval (CI) -36.0, -3.2], p=.0210). The absolute improvement, as assessed by least-squares-mean difference in change from baseline, in forced expiratory volume in 1s (percent predicted) at day 28 for GLPG2737 versus placebo was 3.4% (95% CI -0.5, 7.3). Respiratory symptoms in both groups remained stable. Mild/moderate adverse events occurred in 10 (71.4%) and 8 (100%) subjects receiving GLPG2737 and placebo, respectively. Lower exposures of GLPG2737 (and active metabolite M4) were observed than would be expected if administered alone (as lumacaftor induces CYP3A4). Lumacaftor and ivacaftor exposures were as expected. CONCLUSIONS: GLPG2737 was well tolerated and yielded significant decreases in sweat chloride concentration versus placebo in subjects homozygous for F508del receiving lumacaftor/ivacaftor, demonstrating evidence of increased CFTR activity when added to a potentiator-corrector combination. FUNDING: Galapagos NV. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT03474042.


Assuntos
Aminofenóis , Aminopiridinas , Benzodioxóis , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Quinolonas , Testes de Função Respiratória/métodos , Adulto , Aminofenóis/administração & dosagem , Aminofenóis/efeitos adversos , Aminofenóis/farmacocinética , Aminopiridinas/administração & dosagem , Aminopiridinas/efeitos adversos , Aminopiridinas/farmacocinética , Benzodioxóis/administração & dosagem , Benzodioxóis/efeitos adversos , Benzodioxóis/farmacocinética , Agonistas dos Canais de Cloreto/administração & dosagem , Agonistas dos Canais de Cloreto/efeitos adversos , Agonistas dos Canais de Cloreto/farmacocinética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Combinação de Medicamentos , Feminino , Homozigoto , Humanos , Masculino , Mutação , Quinolonas/administração & dosagem , Quinolonas/efeitos adversos , Quinolonas/farmacocinética , Suor/química , Resultado do Tratamento
9.
J Pharmacol Exp Ther ; 372(1): 107-118, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31732698

RESUMO

Cystic fibrosis (CF) is the most common monogenic autosomal recessive disease in Caucasians caused by pathogenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (CFTR). Significant small molecule therapeutic advances over the past two decades have been made to target the defective CFTR protein and enhance its function. To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in CF, two biomolecular activities are required, namely, correctors to increase the amount of properly folded F508delCFTR levels at the cell surface and potentiators to allow the effective opening, i.e., function of the F508delCFTR channel. Combined, these activities enhance chloride ion transport yielding improved hydration of the lung surface and subsequent restoration of mucociliary clearance. To enhance clinical benefits to CF patients, a complementary triple combination therapy consisting of two corrector molecules, type 1 (C1) and type 2, with additive mechanisms along with a potentiator are being investigated in the clinic for maximum restoration of mutated CFTR function. We report the identification and in vitro biologic characterization of ABBV-2222/GLPG2222 (4-[(2R,4R)-4-({[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)-7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic acid),-a novel, potent, and orally bioavailable C1 corrector developed by AbbVie-Galapagos and currently in clinical trials-which exhibits substantial improvements over the existing C1 correctors. This includes improvements in potency and drug-drug interaction (DDI) compared with 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid (VX-809, Lumacaftor) and improvements in potency and efficacy compared with 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-[1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)indol-5-yl]cyclopropane-1-carboxamide (VX-661, Tezacaftor). ABBV-2222/GLPG2222 exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR with an EC50 value <10 nM. SIGNIFICANCE STATEMENT: To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in cystic fibrosis, AbbVie-Galapagos has developed ABBV-2222/GLPG2222, a novel, potent, and orally bioavailable C1 corrector of this protein. ABBV-2222/GLPG2222, which is currently in clinical trials, exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR and substantial improvements over the existing C1 correctors.


Assuntos
Benzoatos/farmacologia , Benzopiranos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Células Cultivadas , Cloretos/metabolismo , Cricetinae , Regulador de Condutância Transmembrana em Fibrose Cística/química , Células HEK293 , Humanos , Moduladores de Transporte de Membrana/farmacologia , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo
10.
J Cyst Fibros ; 18(5): 693-699, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31147302

RESUMO

BACKGROUND: Investigation of novel cystic fibrosis transmembrane conductance regulator (CFTR) potentiators, such as GLPG1837, for CF patients with gating mutations is challenging as trials require patients to withhold ivacaftor, the current standard of care. This study explored the feasibility of such a study and the impact of one-week ivacaftor withdrawal. METHODS: This open-label, single-arm study aimed to enrol 32 adults ≥18 years of age with CF and at least one p.Gly551Asp (G551D) mutation. Patients received three increasing GLPG1837 dosages twice-daily for two 7-day and one 14-day period following a one-week ivacaftor washout. The primary outcome was safety; secondary outcomes were changes in sweat chloride concentration, spirometry outcomes, and pharmacokinetics. RESULTS: Twenty-six patients enrolled; 24 completed the study. Adverse events were reported by 53.8-76.9% of patients (dosage-dependent), with respiratory adverse events most common. Mean sweat chloride concentrations decreased from 97.7 mmol/L (baseline) to 68.7 mmol/L (end of GLPG1837 treatment). In ivacaftor-pre-treated patients, mean sweat chloride concentrations rose from 42.5 mmol/L at screening to 98.5 mmol/L after ivacaftor washout. Levels were decreased following GLPG1837 treatment (to 68.8 mmol/L at treatment end). Percent predicted forced expiratory volume in 1 s declined from 73.3% at screening to 68.5% after ivacaftor washout but returned to screening level at treatment end (73.1%). CONCLUSIONS: Patient willingness to participate in the study suggests that the need for a short period of ivacaftor withdrawal may not be a barrier to development of novel potentiators, such as GLPG1837. A one-week ivacaftor washout was generally well tolerated, but resulted in a decline in lung function, which was reversed with GLPG1837 treatment to pre-washout levels. Combined with the concentration-dependent decrease in sweat chloride concentration, results show that GLPG1837 increases CFTR activity in G551D-CF patients. FUND: This work was supported by Galapagos NV. CLINICAL TRIAL REGISTRATION NUMBERS: NCT02707562; EudraCT 2015-003291-77.


Assuntos
Aminofenóis , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Substituição de Medicamentos , Piranos , Pirazóis , Quinolonas , Suspensão de Tratamento , Adulto , Aminofenóis/administração & dosagem , Aminofenóis/efeitos adversos , Agonistas dos Canais de Cloreto/administração & dosagem , Agonistas dos Canais de Cloreto/efeitos adversos , Fibrose Cística/diagnóstico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos/métodos , Substituição de Medicamentos/efeitos adversos , Substituição de Medicamentos/métodos , Feminino , Humanos , Masculino , Piranos/administração & dosagem , Piranos/efeitos adversos , Pirazóis/administração & dosagem , Pirazóis/efeitos adversos , Quinolonas/administração & dosagem , Quinolonas/efeitos adversos , Testes de Função Respiratória , Suor/química , Resultado do Tratamento
11.
J Gen Physiol ; 151(7): 912-928, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31164398

RESUMO

The past two decades have witnessed major breakthroughs in developing compounds that target the chloride channel CFTR for the treatment of patients with cystic fibrosis. However, further improvement in affinity and efficacy for these CFTR modulators will require insights into the molecular interactions between CFTR modulators and their binding targets. In this study, we use in silico molecular docking to identify potential binding sites for GLPG1837, a CFTR potentiator that may share a common mechanism and binding site with VX-770, the FDA-approved drug for patients carrying mutations with gating defects. Among the five binding sites predicted by docking, the two top-scoring sites are located at the interface between CFTR's two transmembrane domains: site I consists of D924, N1138, and S1141, and site IIN includes F229, F236, Y304, F312, and F931. Using mutagenesis to probe the importance of these sites for GLPG187 binding, we find that disruption of predicted hydrogen-bonding interactions by mutation of D924 decreases apparent affinity, while hydrophobic amino acids substitutions at N1138 and introduction of positively charged amino acids at S1141 improve the apparent affinity for GLPG1837. Alanine substitutions at Y304, F312, and F931 (site IIN) decrease the affinity for GLPG1837, whereas alanine substitutions at F229 and F236 (also site IIN), or at residues in the other three lower-scoring sites, have little effect. In addition, current relaxation analysis to assess the apparent dissociation rate of VX-770 yields results consistent with the dose-response experiments for GLPG8137, with the dissociation rate of VX-770 accelerated by D924N, F236A, Y304A, and F312A, but decelerated by N1138L and S1141K mutations. Collectively, these data identify two potential binding sites for GLPG1837 and VX-770 in CFTR. We discuss the pros and cons of evidence for these two loci and the implications for future drug design.


Assuntos
Aminofenóis/farmacologia , Agonistas dos Canais de Cloreto/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Piranos/farmacologia , Pirazóis/farmacologia , Quinolonas/farmacologia , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica
12.
Front Pharmacol ; 10: 514, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143125

RESUMO

The deletion of phenylalanine at position 508 (F508del) in cystic fibrosis transmembrane conductance regulator (CFTR) causes a severe defect in folding and trafficking of the chloride channel resulting in its absence at the plasma membrane of epithelial cells leading to cystic fibrosis. Progress in the understanding of the disease increased over the past decades and led to the awareness that combinations of mechanistically different CFTR modulators are required to obtain meaningful clinical benefit. Today, there remains an unmet need for identification and development of more effective CFTR modulator combinations to improve existing therapies for patients carrying the F508del mutation. Here, we describe the identification of a novel F508del corrector using functional assays. We provide experimental evidence that the clinical candidate GLPG/ABBV-2737 represents a novel class of corrector exerting activity both on its own and in combination with VX809 or GLPG/ABBV-2222.

13.
J Cyst Fibros ; 18(5): 700-707, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31056441

RESUMO

BACKGROUND: Several treatment approaches in cystic fibrosis (CF) aim to correct CF transmembrane conductance regulator (CFTR) function; the efficacy of each approach is dependent on the mutation(s) present. A need remains for more effective treatments to correct functional deficits caused by the F508del mutation. METHODS: Two placebo-controlled, phase 2a studies evaluated GLPG2222, given orally once daily for 29 days, in subjects homozygous for F508del (FLAMINGO) or heterozygous for F508del and a gating mutation, receiving ivacaftor (ALBATROSS). The primary objective of both studies was to assess safety and tolerability. Secondary objectives included assessment of pharmacokinetics, and of the effect of GLPG2222 on sweat chloride concentrations, pulmonary function and respiratory symptoms. RESULTS: Fifty-nine and 37 subjects were enrolled into FLAMINGO and ALBATROSS, respectively. Treatment-related treatment-emergent adverse events (TEAEs) were reported by 29.2% (14/48) of subjects in FLAMINGO and 40.0% (12/30) in ALBATROSS; most were mild to moderate in severity and comprised primarily respiratory, gastrointestinal, and infection events. There were no deaths or discontinuations due to TEAEs. Dose-dependent decreases in sweat chloride concentrations were seen in GLPG2222-treated subjects (maximum decrease in FLAMINGO: -17.6 mmol/L [GLPG2222 200 mg], p < 0.0001; ALBATROSS: -7.4 mmol/L [GLPG2222 300 mg], p < 0.05). No significant effects on pulmonary function or respiratory symptoms were reported. Plasma GLPG2222 concentrations in CF subjects were consistent with previous studies in healthy volunteers and CF subjects. CONCLUSIONS: GLPG2222 was well tolerated. Sweat chloride reductions support on-target enhancement of CFTR activity in subjects with F508del mutation(s). Significant improvements in clinical endpoints were not demonstrated. Observed safety results support further evaluation of GLPG2222, including in combination with other CFTR modulators. FUNDING: Galapagos NV. Clinical trial registration numbers FLAMINGO, NCT03119649; ALBATROSS, NCT03045523.


Assuntos
Aminofenóis , Benzoatos , Benzopiranos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Quimioterapia Combinada/métodos , Quinolonas , Testes de Função Respiratória/métodos , Suor , Administração Oral , Adulto , Aminofenóis/administração & dosagem , Aminofenóis/efeitos adversos , Benzoatos/administração & dosagem , Benzoatos/efeitos adversos , Benzoatos/farmacocinética , Benzopiranos/administração & dosagem , Benzopiranos/efeitos adversos , Benzopiranos/farmacocinética , Disponibilidade Biológica , Agonistas dos Canais de Cloreto/administração & dosagem , Agonistas dos Canais de Cloreto/efeitos adversos , Agonistas dos Canais de Cloreto/farmacocinética , Fibrose Cística/diagnóstico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Método Duplo-Cego , Monitoramento de Medicamentos , Feminino , Humanos , Masculino , Mutação , Quinolonas/administração & dosagem , Quinolonas/efeitos adversos , Suor/química , Suor/efeitos dos fármacos , Resultado do Tratamento
14.
Front Pharmacol ; 9: 1221, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416447

RESUMO

There is still a high unmet need for the treatment of most patients with cystic fibrosis (CF). The identification and development of new Cystic Fibrosis Transmembrane conductance Regulator (CFTR) modulators is necessary to achieve higher clinical benefit in patients. In this report we describe the characterization of novel potentiators. From a small screening campaign on F508del CFTR, hits were developed leading to the identification of pre-clinical candidates GLPG1837 and GLPG2451, each derived from a distinct chemical series. Both drug candidates enhance WT CFTR activity as well as low temperature or corrector rescued F508del CFTR, and are able to improve channel activity on a series of Class III, IV CFTR mutants. The observed activities in YFP halide assays translated well to primary cells derived from CF lungs when measured using Trans-epithelial clamp circuit (TECC). Both potentiators improve F508del CFTR channel opening in a similar manner, increasing the open time and reducing the closed time of the channel. When evaluating the potentiators in a chronic setting on corrected F508del CFTR, no reduction of channel activity in presence of potentiator was observed. The current work identifies and characterizes novel CFTR potentiators GLPG1837 and GLPG2451, which may offer new therapeutic options for CF patients.

16.
J Med Chem ; 61(4): 1425-1435, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29148763

RESUMO

Cystic fibrosis (CF) is caused by mutations in the gene for the cystic fibrosis transmembrane conductance regulator (CFTR). With the discovery of Ivacaftor and Orkambi, it has been shown that CFTR function can be partially restored by administering one or more small molecules. These molecules aim at either enhancing the amount of CFTR on the cell surface (correctors) or at improving the gating function of the CFTR channel (potentiators). Here we describe the discovery of a novel potentiator GLPG1837, which shows enhanced efficacy on CFTR mutants harboring class III mutations compared to Ivacaftor, the first marketed potentiator. The optimization of potency, efficacy, and pharmacokinetic profile will be described.


Assuntos
Agonistas dos Canais de Cloreto/química , Fibrose Cística/tratamento farmacológico , Descoberta de Drogas , Proteínas Mutantes/efeitos dos fármacos , Aminofenóis/farmacocinética , Animais , Agonistas dos Canais de Cloreto/farmacocinética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Mutação , Pirazóis/química , Pirazóis/farmacocinética , Quinolonas/farmacocinética , Ratos , Relação Estrutura-Atividade
17.
J Gen Physiol ; 149(12): 1105-1118, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29079713

RESUMO

Cystic fibrosis (CF) is a channelopathy caused by loss-of-function mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a phosphorylation-activated and adenosine triphosphate (ATP)-gated chloride channel. In the past few years, high-throughput drug screening has successfully realized the first US Food and Drug Administration-approved therapy for CF, called ivacaftor (or VX-770). A more recent CFTR potentiator, GLPG1837 (N-(3-carbamoyl-5,5,7,7-tetramethyl-4,7-dihydro-5H-thieno[2,3-c]pyran-2-yl)-1H-pyrazole-3-carboxamide), has been shown to exhibit a higher efficacy than ivacaftor for the G551D mutation, yet the underlying mechanism of GLPG1837 remains unclear. Here we find that despite their differences in potency and efficacy, GLPG1837 and VX-770 potentiate CFTR gating in a remarkably similar manner. Specifically, they share similar effects on single-channel kinetics of wild-type CFTR. Their actions are independent of nucleotide-binding domain (NBD) dimerization and ATP hydrolysis, critical steps controlling CFTR's gate opening and closing, respectively. By applying the two reagents together, we provide evidence that GLPG1837 and VX-770 likely compete for the same site, whereas GLPG1837 and the high-affinity ATP analogue 2'-deoxy-N6-(2-phenylethyl)-adenosine-5'-O-triphosphate (dPATP) work synergistically through two different sites. We also find that the apparent affinity for GLPG1837 is dependent on the open probability of the channel, suggesting a state-dependent binding of the drug to CFTR (higher binding affinity for the open state than the closed state), which is consistent with the classic mechanism for allosteric modulation. We propose a simple four-state kinetic model featuring an energetic coupling between CFTR gating and potentiator binding to explain our experimental results.


Assuntos
Aminofenóis/farmacologia , Agonistas dos Canais de Cloreto/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/agonistas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Quinolonas/farmacologia , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Ligação Proteica
18.
J Med Chem ; 60(17): 7371-7392, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28731719

RESUMO

Autotaxin (ATX) is a secreted enzyme playing a major role in the production of lysophosphatidic acid (LPA) in blood through hydrolysis of lysophosphatidyl choline (LPC). The ATX-LPA signaling axis arouses a high interest in the drug discovery industry as it has been implicated in several diseases including cancer, fibrotic diseases, and inflammation, among others. An imidazo[1,2-a]pyridine series of ATX inhibitors was identified out of a high-throughput screening (HTS). A cocrystal structure with one of these compounds and ATX revealed a novel binding mode with occupancy of the hydrophobic pocket and channel of ATX but no interaction with zinc ions of the catalytic site. Exploration of the structure-activity relationship led to compounds displaying high activity in biochemical and plasma assays, exemplified by compound 40. Compound 40 was also able to decrease the plasma LPA levels upon oral administration to rats.


Assuntos
Imidazóis/química , Imidazóis/farmacologia , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Piridinas/química , Piridinas/farmacologia , Animais , Humanos , Imidazóis/farmacocinética , Lisofosfatidilcolinas/metabolismo , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Inibidores de Fosfodiesterase/farmacocinética , Diester Fosfórico Hidrolases/química , Piridinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
19.
J Immunol ; 191(7): 3568-77, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24006460

RESUMO

The JAKs receive continued interest as therapeutic targets for autoimmune, inflammatory, and oncological diseases. JAKs play critical roles in the development and biology of the hematopoietic system, as evidenced by mouse and human genetics. JAK1 is critical for the signal transduction of many type I and type II inflammatory cytokine receptors. In a search for JAK small molecule inhibitors, GLPG0634 was identified as a lead compound belonging to a novel class of JAK inhibitors. It displayed a JAK1/JAK2 inhibitor profile in biochemical assays, but subsequent studies in cellular and whole blood assays revealed a selectivity of ∼30-fold for JAK1- over JAK2-dependent signaling. GLPG0634 dose-dependently inhibited Th1 and Th2 differentiation and to a lesser extent the differentiation of Th17 cells in vitro. GLPG0634 was well exposed in rodents upon oral dosing, and exposure levels correlated with repression of Mx2 expression in leukocytes. Oral dosing of GLPG0634 in a therapeutic set-up in a collagen-induced arthritis model in rodents resulted in a significant dose-dependent reduction of the disease progression. Paw swelling, bone and cartilage degradation, and levels of inflammatory cytokines were reduced by GLPG0634 treatment. Efficacy of GLPG0634 in the collagen-induced arthritis models was comparable to the results obtained with etanercept. In conclusion, the JAK1 selective inhibitor GLPG0634 is a promising novel therapeutic with potential for oral treatment of rheumatoid arthritis and possibly other immune-inflammatory diseases.


Assuntos
Inflamação/metabolismo , Janus Quinase 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Inativação Gênica , Humanos , Inflamação/tratamento farmacológico , Concentração Inibidora 50 , Interleucina-6/farmacologia , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Piridinas/administração & dosagem , Ratos , Fator de Transcrição STAT1/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Triazóis/administração & dosagem
20.
Antimicrob Agents Chemother ; 57(10): 4971-81, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23896472

RESUMO

Despite their high clinical and socioeconomic impacts, there is currently no approved antiviral therapy for the prophylaxis or treatment of enterovirus infections. Here we report on a novel inhibitor of enterovirus replication, compound 1, 2-fluoro-4-(2-methyl-8-(3-(methylsulfonyl)benzylamino)imidazo[1,2-a]pyrazin-3-yl)phenol. This compound exhibited a broad spectrum of antiviral activity, as it inhibited all tested species of enteroviruses and rhinoviruses, with 50% effective concentrations ranging between 4 and 71 nM. After a lengthy resistance selection process, coxsackievirus mutants resistant to compound 1 were isolated that carried substitutions in their 3A protein. Remarkably, the same substitutions were recently shown to provide resistance to inhibitors of phosphatidylinositol 4-kinase IIIß (PI4KIIIß), a lipid kinase that is essential for enterovirus replication, suggesting that compound 1 may also target this host factor. Accordingly, compound 1 directly inhibited PI4KIIIß in an in vitro kinase activity assay. Furthermore, the compound strongly reduced the PI 4-phosphate levels of the Golgi complex in cells. Rescue of coxsackievirus replication in the presence of compound 1 by a mutant PI4KIIIß carrying a substitution in its ATP-binding pocket revealed that the compound directly binds the kinase at this site. Finally, we determined that an analogue of compound 1, 3-(3-fluoro-4-methoxyphenyl)-2-methyl-N-(pyridin-4-ylmethyl)imidazo[1,2-a]pyrazin-8-amine, is well tolerated in mice and has a dose-dependent protective activity in a coxsackievirus serotype B4-induced pancreatitis model.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Enterovirus/efeitos dos fármacos , Enterovirus/metabolismo , Animais , Enterovirus/patogenicidade , Ativação Enzimática/efeitos dos fármacos , Imunofluorescência , Células HeLa , Humanos , Masculino , Camundongos , Estrutura Molecular , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...