Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(38): 15661-15673, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34529421

RESUMO

Efficient excited-state electron transfer between an iron(III) photosensitizer and organic electron donors was realized with green light irradiation. This advance was enabled by the use of the previously reported iron photosensitizer, [Fe(phtmeimb)2]+ (phtmeimb = {phenyl[tris(3-methyl-imidazolin-2-ylidene)]borate}, that exhibited long-lived and luminescent ligand-to-metal charge-transfer (LMCT) excited states. A benchmark dehalogenation reaction was investigated with yields that exceed 90% and an enhanced stability relative to the prototypical photosensitizer [Ru(bpy)3]2+. The initial catalytic step is electron transfer from an amine to the photoexcited iron sensitizer, which is shown to occur with a large cage-escape yield. For LMCT excited states, this reductive electron transfer is vectorial and may be a general advantage of Fe(III) photosensitizers. In-depth time-resolved spectroscopic methods, including transient absorption characterization from the ultraviolet to the infrared regions, provided a quantitative description of the catalytic mechanism with associated rate constants and yields.

2.
J Am Chem Soc ; 142(35): 14940-14946, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786793

RESUMO

Classical capacitance studies have revealed that the first layer of water present at an aqueous metal-electrolyte interface has a dielectric constant less than 1/10th of that of bulk water. Modern theory indicates that the barrier for electron transfer will decrease substantially in this layer; yet, this important prediction has not been tested experimentally. Here, we report the interfacial electron transfer kinetics for molecules positioned at variable distances within the electric double layer of a transparent conductive oxide as a function of the Gibbs free energy change. The data indicate that the solvent reorganization is indeed near zero and increases to bulk values only when the molecules are positioned greater than 15 Å from the conductive electrode. Consistent with this conclusion, lateral intermolecular electron transfer, parallel to a semiconducting oxide electrode, was shown to be more rapid when the molecules were within the electric double layer. The results provide much needed feedback for theoretical studies and also indicate a huge kinetic advantage for aqueous electron transfer and redox catalysis that takes place proximate to a solid interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...