Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Open Forum Infect Dis ; 11(3): ofae081, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440301

RESUMO

Background: Index-cluster studies may help characterize the spread of communicable infections in the presymptomatic state. We describe a prospective index-cluster sampling strategy (ICSS) to detect presymptomatic respiratory viral illness and its implementation in a college population. Methods: We enrolled an annual cohort of first-year undergraduates who completed daily electronic symptom diaries to identify index cases (ICs) with respiratory illness. Investigators then selected 5-10 potentially exposed, asymptomatic close contacts (CCs) who were geographically co-located to follow for infections. Symptoms and nasopharyngeal samples were collected for 5 days. Logistic regression model-based predictions for proportions of self-reported illness were compared graphically for the whole cohort sampling group and the CC group. Results: We enrolled 1379 participants between 2009 and 2015, including 288 ICs and 882 CCs. The median number of CCs per IC was 6 (interquartile range, 3-8). Among the 882 CCs, 111 (13%) developed acute respiratory illnesses. Viral etiology testing in 246 ICs (85%) and 719 CCs (82%) identified a pathogen in 57% of ICs and 15% of CCs. Among those with detectable virus, rhinovirus was the most common (IC: 18%; CC: 6%) followed by coxsackievirus/echovirus (IC: 11%; CC: 4%). Among 106 CCs with a detected virus, only 18% had the same virus as their associated IC. Graphically, CCs did not have a higher frequency of self-reported illness relative to the whole cohort sampling group. Conclusions: Establishing clusters by geographic proximity did not enrich for cases of viral transmission, suggesting that ICSS may be a less effective strategy to detect spread of respiratory infection.

2.
Genome Med ; 13(1): 83, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001247

RESUMO

BACKGROUND: While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility. RESULTS: Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb)) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs associated with both severe COVID-19 and other human traits demonstrated colocalization of the GWAS signal at the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN). This finding points to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity. CONCLUSIONS: Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches. The iCPAGdb web portal is accessible at http://cpag.oit.duke.edu and the software code at https://github.com/tbalmat/iCPAGdb .


Assuntos
COVID-19/genética , Bases de Dados de Ácidos Nucleicos , Predisposição Genética para Doença , Desequilíbrio de Ligação , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/genética , Estudo de Associação Genômica Ampla , Humanos
3.
Nat Commun ; 12(1): 1079, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597532

RESUMO

SARS-CoV-2 infection has been shown to trigger a wide spectrum of immune responses and clinical manifestations in human hosts. Here, we sought to elucidate novel aspects of the host response to SARS-CoV-2 infection through RNA sequencing of peripheral blood samples from 46 subjects with COVID-19 and directly comparing them to subjects with seasonal coronavirus, influenza, bacterial pneumonia, and healthy controls. Early SARS-CoV-2 infection triggers a powerful transcriptomic response in peripheral blood with conserved components that are heavily interferon-driven but also marked by indicators of early B-cell activation and antibody production. Interferon responses during SARS-CoV-2 infection demonstrate unique patterns of dysregulated expression compared to other infectious and healthy states. Heterogeneous activation of coagulation and fibrinolytic pathways are present in early COVID-19, as are IL1 and JAK/STAT signaling pathways, which persist into late disease. Classifiers based on differentially expressed genes accurately distinguished SARS-CoV-2 infection from other acute illnesses (auROC 0.95 [95% CI 0.92-0.98]). The transcriptome in peripheral blood reveals both diverse and conserved components of the immune response in COVID-19 and provides for potential biomarker-based approaches to diagnosis.


Assuntos
COVID-19/genética , Perfilação da Expressão Gênica/métodos , Leucócitos Mononucleares/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma/genética , COVID-19/sangue , COVID-19/virologia , Citocinas/genética , Interações Hospedeiro-Patógeno , Humanos , Influenza Humana/genética , Pneumonia Bacteriana/genética , SARS-CoV-2/fisiologia , Transdução de Sinais/genética
4.
Lancet Infect Dis ; 21(3): 396-404, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32979932

RESUMO

BACKGROUND: Early and accurate identification of individuals with viral infections is crucial for clinical management and public health interventions. We aimed to assess the ability of transcriptomic biomarkers to identify naturally acquired respiratory viral infection before typical symptoms are present. METHODS: In this index-cluster study, we prospectively recruited a cohort of undergraduate students (aged 18-25 years) at Duke University (Durham, NC, USA) over a period of 5 academic years. To identify index cases, we monitored students for the entire academic year, for the presence and severity of eight symptoms of respiratory tract infection using a daily web-based survey, with symptoms rated on a scale of 0-4. Index cases were defined as individuals who reported a 6-point increase in cumulative daily symptom score. Suspected index cases were visited by study staff to confirm the presence of reported symptoms of illness and to collect biospecimen samples. We then identified clusters of close contacts of index cases (ie, individuals who lived in close proximity to index cases, close friends, and partners) who were presumed to be at increased risk of developing symptomatic respiratory tract infection while under observation. We monitored each close contact for 5 days for symptoms and viral shedding and measured transcriptomic responses at each timepoint each day using a blood-based 36-gene RT-PCR assay. FINDINGS: Between Sept 1, 2009, and April 10, 2015, we enrolled 1465 participants. Of 264 index cases with respiratory tract infection symptoms, 150 (57%) had a viral cause confirmed by RT-PCR. Of their 555 close contacts, 106 (19%) developed symptomatic respiratory tract infection with a proven viral cause during the observation window, of whom 60 (57%) had the same virus as their associated index case. Nine viruses were detected in total. The transcriptomic assay accurately predicted viral infection at the time of maximum symptom severity (mean area under the receiver operating characteristic curve [AUROC] 0·94 [95% CI 0·92-0·96]), as well as at 1 day (0·87 [95% CI 0·84-0·90]), 2 days (0·85 [0·82-0·88]), and 3 days (0·74 [0·71-0·77]) before peak illness, when symptoms were minimal or absent and 22 (62%) of 35 individuals, 25 (69%) of 36 individuals, and 24 (82%) of 29 individuals, respectively, had no detectable viral shedding. INTERPRETATION: Transcriptional biomarkers accurately predict and diagnose infection across diverse viral causes and stages of disease and thus might prove useful for guiding the administration of early effective therapy, quarantine decisions, and other clinical and public health interventions in the setting of endemic and pandemic infectious diseases. FUNDING: US Defense Advanced Research Projects Agency.


Assuntos
RNA Viral/genética , Infecções Respiratórias/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Adolescente , Adulto , Biomarcadores/sangue , Feminino , Humanos , Modelos Logísticos , Masculino , Estudos Prospectivos , RNA Viral/sangue , Infecções Respiratórias/sangue , Infecções Respiratórias/genética , Infecções Respiratórias/virologia , Fatores de Transcrição/sangue , Viroses/sangue , Viroses/diagnóstico , Viroses/virologia , Adulto Jovem
5.
medRxiv ; 2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32743603

RESUMO

In order to elucidate novel aspects of the host response to SARS-CoV-2 we performed RNA sequencing on peripheral blood samples across 77 timepoints from 46 subjects with COVID-19 and compared them to subjects with seasonal coronavirus, influenza, bacterial pneumonia, and healthy controls. Early SARS-CoV-2 infection triggers a conserved transcriptomic response in peripheral blood that is heavily interferon-driven but also marked by indicators of early B-cell activation and antibody production. Interferon responses during SARS-CoV-2 infection demonstrate unique patterns of dysregulated expression compared to other infectious and healthy states. Heterogeneous activation of coagulation and fibrinolytic pathways are present in early COVID-19, as are IL1 and JAK/STAT signaling pathways, that persist into late disease. Classifiers based on differentially expressed genes accurately distinguished SARS-CoV-2 infection from other acute illnesses (auROC 0.95). The transcriptome in peripheral blood reveals unique aspects of the immune response in COVID-19 and provides for novel biomarker-based approaches to diagnosis.

6.
medRxiv ; 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33398303

RESUMO

While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility. Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb); http://cpag.oit.duke.edu) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs with severe COVID-19 demonstrated colocalization of the GWAS signal of the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN), pointing to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity. Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches.

7.
Arch Phys Med Rehabil ; 98(9): 1792-1799, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28130082

RESUMO

OBJECTIVE: To identify the inflammatory mediators around the time of pneumonia onset associated with concurrent or later onset of pressure ulcers (PUs). DESIGN: Retrospective. SETTING: Acute hospitalization and inpatient rehabilitation unit of a university medical center. PARTICIPANTS: Individuals (N=86) with traumatic spinal cord injury (SCI) were included in the initial analyses. Fifteen of the 86 developed pneumonia and had inflammatory mediator data available. Of these 15, 7 developed PUs and 8 did not. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Twenty-three inflammatory mediators in plasma and urine were assayed. The differences in concentrations of plasma and urine inflammatory mediators between the closest time point before and after the diagnosis of pneumonia were calculated. RESULTS: Initial chi-square analysis revealed a significant (P=.02) association between pneumonia and PUs. Individuals with SCI and diagnosed pneumonia had nearly double the risk for developing PUs compared with those with no pneumonia. In individuals with pneumonia, Mann-Whitney U exact tests suggested an association (P<.05) between the formation of a first PU and a slight increase in plasma concentrations of tumor necrosis factor-alpha (TNF-α), and a decrease in urine concentrations of TNF-α, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin (IL)-15 after onset of pneumonia. CONCLUSIONS: These findings suggest that a relatively small increase in plasma TNF-α, and decreases in urine TNF-α, GM-CSF, and IL-15 from just before to just after the diagnosis of pneumonia could be markers for an increased risk of PUs in individuals with pneumonia after traumatic SCI.


Assuntos
Mediadores da Inflamação/sangue , Mediadores da Inflamação/urina , Pneumonia/complicações , Úlcera por Pressão/etiologia , Traumatismos da Medula Espinal/complicações , Distribuição de Qui-Quadrado , Estudos Transversais , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/urina , Humanos , Interleucina-15/urina , Masculino , Projetos Piloto , Pneumonia/sangue , Pneumonia/urina , Estudos Retrospectivos , Fatores de Risco , Traumatismos da Medula Espinal/sangue , Traumatismos da Medula Espinal/urina , Estatísticas não Paramétricas , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...