Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013828

RESUMO

Histone acetylation involves the addition of acetyl groups to specific amino acid residues. This chemical histone modification is broadly divided into two types - acetylation of the amino group found on the side chain of internal lysine residues (lysine acetylation) or acetylation of the α-amino group at the N-terminal amino acid residue (N-terminal acetylation). Although the former modification is considered a classic epigenetic mark, the biological importance of N-terminal acetylation has been mostly overlooked in the past, despite its widespread occurrence and evolutionary conservation. However, recent studies have now conclusively demonstrated that histone N-terminal acetylation impacts important cellular processes, such as controlling gene expression and chromatin function, and thus ultimately affecting biological phenotypes, such as cellular ageing, metabolic rewiring and cancer. In this Review, we provide a summary of the literature, highlighting current knowledge on the function of this modification, as well as allude to open questions we expect to be the focus of future research on histone N-terminal acetylation.


Assuntos
Histonas , Lisina , Histonas/metabolismo , Acetilação , Lisina/metabolismo , Cromatina , Processamento de Proteína Pós-Traducional
2.
Data Brief ; 31: 105885, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32637492

RESUMO

The introduction of methyl groups on arginine residues is catalysed by Protein Arginine Methyltransferases (PRMTs). However, the regulatory mechanisms that dictate the levels of protein arginine methylation within cells are still not completely understood. We employed Synthetic Dosage Lethality (SDL) screening in Saccharomyces cerevisiae, for the identification of putative regulators of arginine methylation mediated by Hmt1 (HnRNP methyltransferase 1), ortholog of human PRMT1. We developed an SDL array of 4548 yeast strains in which each strain contained a single non-essential gene deletion, in combination with a galactose-inducible construct overexpressing wild-type (WT) Hmt1-HZ tagged protein. We identified 129 consistent SDL interactions for WT Hmt1-HZ which represented genes whose deletion displayed significant growth reduction when combined with WT Hmt1 overexpression. To identify among the SDL interactions those that were dependent on the methyltransferase activity of Hmt1, SDL screens were repeated using an array overexpressing a catalytically inactive Hmt1(G68R)-HZ protein. Furthermore, an additional SDL control screen was performed using an array overexpressing only the protein tag HZ (His6-HA-ZZ) to eliminate false-positive SDL interactions. This analysis has led to a dataset of 50 high-confidence SDL interactions of WT Hmt1 which enrich eight Gene Ontology biological process terms. This dataset can be further exploited in biochemical and functional studies to illuminate which of the SDL interactors of Hmt1 correspond to factors implicated in the regulation of Hmt1-mediated arginine methylation and reveal the underlying molecular mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...