Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1415846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953109

RESUMO

Diabetic retinopathy is a secondary microvascular complication of diabetes mellitus. This disease progresses from two stages, non-proliferative and proliferative diabetic retinopathy, the latter characterized by retinal abnormal angiogenesis. Pharmacological management of retinal angiogenesis employs expensive and invasive intravitreal injections of biologic drugs (anti-vascular endothelial growth factor agents). To search small molecules able to act as anti-angiogenic agents, we focused our study on axitinib, which is a tyrosine kinase inhibitor and represents the second line treatment for renal cell carcinoma. Axitinib is an inhibitor of vascular endothelial growth factor receptors, and among the others tyrosine kinase inhibitors (sunitinib and sorafenib) is the most selective towards vascular endothelial growth factor receptors 1 and 2. Besides the well-known anti-angiogenic and immune-modulatory functions, we hereby explored the polypharmacological profile of axitinib, through a bioinformatic/molecular modeling approach and in vitro models of diabetic retinopathy. We showed the anti-angiogenic activity of axitinib in two different in vitro models of diabetic retinopathy, by challenging retinal endothelial cells with high glucose concentration (fluctuating and non-fluctuating). We found that axitinib, along with inhibition of vascular endothelial growth factor receptors 1 (1.82 ± 0.10; 0.54 ± 0.13, phosphorylated protein levels in fluctuating high glucose vs . axitinib 1 µM, respectively) and vascular endothelial growth factor receptors 2 (2.38 ± 0.21; 0.98 ± 0.20, phosphorylated protein levels in fluctuating high glucose vs . axitinib 1 µM, respectively), was able to significantly reduce (p < 0.05) the expression of Nrf2 (1.43 ± 0.04; 0.85 ± 0.01, protein levels in fluctuating high glucose vs . axitinib 1 µM, respectively) in retinal endothelial cells exposed to high glucose, through predicted Keap1 interaction and activation of melanocortin receptor 1. Furthermore, axitinib treatment significantly (p < 0.05) decreased reactive oxygen species production (0.90 ± 0.10; 0.44 ± 0.06, fluorescence units in high glucose vs . axitinib 1 µM, respectively) and inhibited ERK pathway (1.64 ± 0.09; 0.73 ± 0.06, phosphorylated protein levels in fluctuating high glucose vs . axitinib 1 µM, respectively) in HRECs exposed to high glucose. The obtained results about the emerging polypharmacological profile support the hypothesis that axitinib could be a valid candidate to handle diabetic retinopathy, with ancillary mechanisms of action.

2.
Brain Cogn ; 177: 106163, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685168

RESUMO

Mounting evidence indicates a close correspondence between episodic memory, mental imagery, and oculomotor behaviour. It remains unclear, however, how oculomotor variables support endogenously driven forms of mental imagery and how this relationship changes across the adult lifespan. In this study we investigated age-related changes in oculomotor signatures during scene construction and explored how task complexity impacts these processes. Younger and cognitively healthy older participants completed a guided scene construction paradigm where scene complexity was manipulated according to the number of elements to be sequentially integrated. We recorded participants' eye movements and collected subjective ratings regarding their phenomenological experience. Overall, older adults rated their constructions as more vivid and more spatially integrated, while also generating more fixations and saccades relative to the younger group, specifically on control trials. Analyses of participants' total scan paths revealed that, in the early stages of scene construction, oculomotor behaviour changed as a function of task complexity within each group. Following the introduction of a second stimulus, older but not younger adults showed a significant decrease in the production of eye movements. Whether this shift in oculomotor behaviour serves a compensatory function to bolster task performance represents an important question for future research.


Assuntos
Movimentos Oculares , Envelhecimento Saudável , Humanos , Masculino , Idoso , Feminino , Adulto , Adulto Jovem , Movimentos Oculares/fisiologia , Envelhecimento Saudável/fisiologia , Pessoa de Meia-Idade , Imaginação/fisiologia , Memória Episódica , Envelhecimento/fisiologia
3.
Curr Opin Pharmacol ; 74: 102425, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38183849

RESUMO

With the spread of the "omics" sciences, the approaches of systems biology can be considered as new paradigms of pharmacological research for discovery of novel targets and/or treatments for complex multifactorial diseases. Data from omics sciences can be used for the design of biologic networks, that in turn can be quantitatively analyzed to identify new pharmacological targets. In this review, we will introduce the concept of network pharmacology, particularly the application of this innovative approach in the field of ocular pharmacology, with a focus on retinal diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD) and glaucoma.


Assuntos
Retinopatia Diabética , Doenças Retinianas , Humanos , Farmacologia em Rede , Olho , Retinopatia Diabética/tratamento farmacológico , Descoberta de Drogas
4.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069070

RESUMO

Primary mitochondrial diseases (PMDs) are complex group of metabolic disorders caused by genetically determined impairment of the mitochondrial oxidative phosphorylation (OXPHOS). The unique features of mitochondrial genetics and the pivotal role of mitochondria in cell biology explain the phenotypical heterogeneity of primary mitochondrial diseases and the resulting diagnostic challenges that follow. Some peculiar features ("red flags") may indicate a primary mitochondrial disease, helping the physician to orient in this diagnostic maze. In this narrative review, we aimed to outline the features of the most common mitochondrial red flags offering a general overview on the topic that could help physicians to untangle mitochondrial medicine complexity.


Assuntos
Medicina , Doenças Mitocondriais , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa
5.
Transl Vis Sci Technol ; 12(1): 5, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598459

RESUMO

Purpose: To assess the safety profile of a new lutein-based vitreous dye (LB-VD) formulation compared with various triamcinolone acetonide (TA) formulations with and without subsequent exposure to perfluorodecalin (PFD) in vitro. Methods: Human adult retinal pigment epithelial cells (ARPE-19) were treated with the following formulations: undiluted preserved TA (TA-BA), diluted preserved TA (D-TA-BA), preservative-free TA (TA-PF), and LB-VD. First, cell tolerability was evaluated with MTT, LDH, and ATPlite assays after 1, 5, and 30 minutes of exposure to each tested formulation. Then, cells were sequentially exposed to formulations and PFD. After 24 hours of exposure to PFD, cell tolerability was evaluated through MTT and ATPlite assays. Results: Among the formulations tested, LB-VD showed the highest levels of cell viability, cell metabolism, and cell proliferation and induced the lowest release of LDH, whereas the TA-based formulations demonstrated a cytotoxic effect on ARPE-19 cells in vitro. After subsequent 24-hour exposure to PFD, a greater reduction of cell viability was noted for all the formulations; however, this reduction was not significant only for the combination LB-VD-PFD, which was the best tolerated condition. Conclusions: LB-VD showed a better safety profile compared with all TA-based formulations, even when used in combination with PFD. Translational Relevance: In surgical practice, LB-VD may be preferred to TA-based formulations for vitreous staining in the light of its more favorable safety profile.


Assuntos
Luteína , Triancinolona Acetonida , Humanos , Triancinolona Acetonida/toxicidade , Luteína/efeitos adversos , Conservantes Farmacêuticos/toxicidade , Coloração e Rotulagem
6.
Front Pharmacol ; 12: 778165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803719

RESUMO

Age-related macular degeneration (AMD) is a degenerative retinal disease and one of major causes of irreversible vision loss. AMD has been linked to several pathological factors, such as oxidative stress and inflammation. Moreover, Aß (1-42) oligomers have been found in drusen, the extracellular deposits that accumulate beneath the retinal pigmented epithelium in AMD patients. Hereby, we investigated the hypothesis that treatment with 1,25(OH) 2D3 (vitamin D3) and meso-zeaxathin, physiologically present in the eye, would counteract the toxic effects of three different insults on immortalized human retinal pigmented epithelial cells (ARPE-19). Specifically, ARPE-19 cells have been challenged with Aß (1-42) oligomers, H2O2, LPS, and TNF-α, respectively. In the present study, we demonstrated that the combination of 1,25(OH)2D3 and meso-zeaxanthin significantly counteracted the cell damage induced by the three insults, at least in these in vitro integrated paradigms of AMD. These results suggest that combination of 1,25(OH)2D3 and meso-zeaxathin could be a useful approach to contrast pathological features of AMD, such as retinal inflammation and oxidative stress.

7.
Cell Death Dis ; 12(10): 905, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611142

RESUMO

Age-related disorders, such as Alzheimer's disease (AD) and age-related macular degeneration (AMD) share common features such as amyloid-ß (Aß) protein accumulation. Retinal deposition of Aß aggregates in AMD patients has suggested a potential link between AMD and AD. In the present study, we analyzed the expression pattern of a focused set of miRNAs, previously found to be involved in both AD and AMD, in the retina of a triple transgenic mouse model of AD (3xTg-AD) at different time-points. Several miRNAs were differentially expressed in the retina of 3xTg-AD mice, compared to the retina of age-matched wild-type (WT) mice. In particular, bioinformatic analysis revealed that miR-155 had a central role in miRNA-gene network stability, regulating several pathways, including apoptotic and inflammatory signaling pathways modulated by TNF-related apoptosis-inducing ligand (TNFSF10). We showed that chronic treatment of 3xTg-AD mice with an anti-TNFSF10 monoclonal antibody was able to inhibit the retinal expression of miR-155, which inversely correlated with the expression of its molecular target SOCS-1. Moreover, the fine-tuned mechanism related to TNFSF10 immunoneutralization was tightly linked to modulation of TNFSF10 itself and its death receptor TNFRSF10B, along with cytokine production by microglia, reactive gliosis, and specific AD-related neuropathological hallmarks (i.e., Aß deposition and Tau phosphorylation) in the retina of 3xTg-AD mice. In conclusion, immunoneutralization of TNFSF10 significantly preserved the retinal tissue in 3xTg-AD mice, suggesting its potential therapeutic application in retinal degenerative disorders.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Inflamação/patologia , MicroRNAs/metabolismo , Retina/patologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Sequência de Bases , Proteínas de Ligação ao Cálcio/metabolismo , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/complicações , Gliose/patologia , Inflamação/complicações , Inflamação/genética , Interleucina-10/metabolismo , Camundongos Transgênicos , MicroRNAs/genética , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fosforilação/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas tau/metabolismo
8.
J Neuroinflammation ; 18(1): 206, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530842

RESUMO

BACKGROUND: Glaucoma is an optic neuropathy characterized by loss of function and death of retinal ganglion cells (RGCs), leading to irreversible vision loss. Neuroinflammation is recognized as one of the causes of glaucoma, and currently no treatment is addressing this mechanism. We aimed to investigate the anti-inflammatory and neuroprotective effects of 1,25(OH)2D3 (1α,25-dihydroxyvitamin D3, calcitriol), in a genetic model of age-related glaucomatous neurodegeneration (DBA/2J mice). METHODS: DBA/2J mice were randomized to 1,25(OH)2D3 or vehicle treatment groups. Pattern electroretinogram, flash electroretinogram, and intraocular pressure were recorded weekly. Immunostaining for RBPMS, Iba-1, and GFAP was carried out on retinal flat mounts to assess retinal ganglion cell density and quantify microglial and astrocyte activation, respectively. Molecular biology analyses were carried out to evaluate retinal expression of pro-inflammatory cytokines, pNFκB-p65, and neuroprotective factors. Investigators that analysed the data were blind to experimental groups, which were unveiled after graph design and statistical analysis, that were carried out with GraphPad Prism. Several statistical tests and approaches were used: the generalized estimated equations (GEE) analysis, t-test, and one-way ANOVA. RESULTS: DBA/2J mice treated with 1,25(OH)2D3 for 5 weeks showed improved PERG and FERG amplitudes and reduced RGCs death, compared to vehicle-treated age-matched controls. 1,25(OH)2D3 treatment decreased microglial and astrocyte activation, as well as expression of inflammatory cytokines and pNF-κB-p65 (p < 0.05). Moreover, 1,25(OH)2D3-treated DBA/2J mice displayed increased mRNA levels of neuroprotective factors (p < 0.05), such as BDNF. CONCLUSIONS: 1,25(OH)2D3 protected RGCs preserving retinal function, reducing inflammatory cytokines, and increasing expression of neuroprotective factors. Therefore, 1,25(OH)2D3 could attenuate the retinal damage in glaucomatous patients and warrants further clinical evaluation for the treatment of optic neuropathies.


Assuntos
Calcitriol/administração & dosagem , Glaucoma/metabolismo , Glaucoma/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Animais , Hormônios e Agentes Reguladores de Cálcio/administração & dosagem , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/fisiologia , Glaucoma/genética , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos
9.
Front Pharmacol ; 12: 705405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366858

RESUMO

To investigate the neuroprotective effect of brimonidine after retinal ischemia damage on mouse eye. Glaucoma is an optic neuropathy characterized by retinal ganglion cells (RGCs) death, irreversible peripheral and central visual field loss, and high intraocular pressure. Ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to mimic conditions of glaucomatous neurodegeneration. Mouse eyes were treated topically with brimonidine and pattern electroretinogram were used to assess the retinal ganglion cells (RGCs) function. A wide range of inflammatory markers, as well as anti-inflammatory and neurotrophic molecules, were investigated to figure out the potential protective effects of brimonidine in mouse retina. In particular, brain-derived neurotrophic factor (BDNF), IL-6, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptor DR-5, TNF-α, GFAP, Iba-1, NOS, IL-1ß and IL-10 were assessed in mouse retina that underwent to I/R insult with or without brimonidine treatment. Brimonidine provided remarkable RGCs protection in our paradigm. PERG amplitude values were significantly (p < 0.05) higher in brimonidine-treated eyes in comparison to I/R retinas. Retinal BDNF mRNA levels in the I/R group dropped significantly (p < 0.05) compared to the control group (normal mice); brimonidine treatment counteracted the downregulation of retinal BDNF mRNA in I/R eyes. Retinal inflammatory markers increased significantly (p < 0.05) in the I/R group and brimonidine treatment was able to revert that. The anti-inflammatory IL-10 decreased significantly (p < 0.05) after retinal I/R insult and increased significantly (p < 0.05) in the group treated with brimonidine. In conclusion, brimonidine was effective in preventing loss of function of RGCs and in regulating inflammatory biomarkers elicited by retinal I/R injury.

11.
Trends Cogn Sci ; 25(4): 272-283, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33618981

RESUMO

Much of the rich internal world constructed by humans is derived from, and experienced through, visual mental imagery. Despite growing appreciation of visual exploration in guiding episodic memory processes, extant theories of prospection have yet to accommodate the precise role of visual mental imagery in the service of future-oriented thinking. We propose that the construction of future events relies on the assimilation of perceptual details originally experienced, and subsequently reinstantiated, predominantly in the visual domain. Individual differences in the capacity to summon discrete aspects of visual imagery can therefore account for the diversity of content generated by humans during future simulation. Our integrative framework provides a novel testbed to query alterations in future thinking in health and disease.


Assuntos
Memória Episódica , Movimentos Oculares , Humanos , Imaginação , Rememoração Mental , Pensamento
13.
J Am Med Dir Assoc ; 22(1): 96-100.e5, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32948474

RESUMO

OBJECTIVES: Psycholeptic drugs have been used in the older population for years, especially to control delirium and neuropsychiatric symptoms (NPS) of dementia. However, data from the literature confirm that the prolonged use of psycholeptics may be responsible for adverse reactions in older patients. The aim of this study was (1) to identify how many patients receive the first prescription of a psycholeptic drug during the hospital stay; (2) to evaluate the main sociodemographic and clinical characteristics of these patients; and (3) to verify if the prescribed psycholeptic drugs are continued after 3 months from the hospital discharge. DESIGN: Our retrospective study was based on data from the REPOSI (REgistro POliterapie SIMI) registry, a cohort of older patients hospitalized in internal medicine and geriatric wards throughout Italy from 2010 to 2018. SETTING AND PARTICIPANTS: Patients aged 65 years or older who were not on home therapy with psycholeptic drugs were considered in the analyses. METHODS: We did both univariate and multivariate analyses in order to find the variables associated independently to an increased risk for first psycholeptic prescription at hospital discharge. RESULTS: At hospital discharge, 193 patients (5.8%) out of a total sample of 3322 patients were prescribed at least 1 psycholeptic drug. Cognitive impairment was the main risk factor for the introduction of psycholeptic drugs at discharge. Among them, 89.1% were still on therapy with a psycholeptic drug after 3 months from the hospital discharge. CONCLUSIONS AND IMPLICATIONS: Cognitive impairment represents the main risk factor for psycholeptic initiation in hospitalized older patients. The vast majority of these treatments are chronically continued after the discharge. Therefore, special attention is needed in prescribing psycholeptics at discharge, because their prolonged use may lead to cognitive decline. Moreover, their continued use should be questioned by physicians providing post-acute care, and deprescribing should be considered.


Assuntos
Hospitalização , Alta do Paciente , Idoso , Humanos , Itália , Tempo de Internação , Estudos Retrospectivos
14.
Front Pharmacol ; 12: 824885, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069225

RESUMO

Caffeine, one of the most consumed central nervous system (CNS) stimulants, is an antagonist of A1 and A2A adenosine receptors. In this study, we investigated the potential protective effects of this methylxanthine in the retinal tissue. We tested caffeine by using in vitro and in vivo paradigms of retinal inflammation. Human retinal pigment epithelial cells (ARPE-19) were exposed to lipopolysaccharide (LPS) with or without caffeine. This latter was able to reduce the inflammatory response in ARPE-19 cells exposed to LPS, attenuating the release of IL-1ß, IL-6, and TNF-α and the nuclear translocation of p-NFκB. Additionally, caffeine treatment restored the integrity of the ARPE-19 monolayer assessed by transepithelial electrical resistance (TEER) and the sodium fluorescein permeability test. Finally, the ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to induce retinal inflammation and investigate the effects of caffeine treatment. Mouse eyes were treated topically with caffeine, and a pattern electroretinogram (PERG) was used to assess the retinal ganglion cell (RGC) function; furthermore, we evaluated the levels of IL-6 and BDNF in the retina. Retinal BDNF dropped significantly (p < 0.05) in the I/R group compared to the control group (normal mice); on the contrary, caffeine treatment maintained physiological levels of BDNF in the retina of I/R eyes. Caffeine was also able to reduce IL-6 mRNA levels in the retina of I/R eyes. In conclusion, these findings suggest that caffeine is a good candidate to counteract inflammation in retinal diseases.

15.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334029

RESUMO

Transforming growth factor ß1 (TGFß1) is a proinflammatory cytokine that has been implicated in the pathogenesis of diabetic retinopathy (DR), particularly in the late phase of disease. The aim of the present study was to validate serum TGFß1 as a diagnostic and prognostic biomarker of DR stages. Thirty-eight subjects were enrolled and, after diagnosis and evaluation of inclusion and exclusion criteria, were assigned to six groups: (1) healthy age-matched control, (2) diabetic without DR, (3) non-proliferative diabetic retinopathy (NPDR) naïve to treatment, (4) NPDR treated with intravitreal (IVT) aflibercept, (5) proliferative diabetic retinopathy (PDR) naïve to treatment and (6) PDR treated with IVT aflibercept. Serum levels of vascular endothelial growth factor A (VEGF-A), placental growth factor (PlGF) and TGFß1 were measured by means of enzyme-linked immunosorbent assay (ELISA). Foveal macular thickness (FMT) in enrolled subjects was evaluated by means of structural-optical coherence tomography (S-OCT). VEGF-A serum levels decreased in NPDR and PDR patients treated with aflibercept, compared to naïve DR patients. PlGF serum levels were modulated only in aflibercept-treated NPDR patients. Particularly, TGFß1 serum levels were predictive of disease progression from NPDR to PDR. A Multivariate ANOVA analysis (M-ANOVA) was also carried out to assess the effects of fixed factors on glycated hemoglobin (HbA1c) levels, TGFß1, and diabetes duration. In conclusion, our data have strengthened the hypothesis that TGFß1 would be a biomarker and pharmacological target of diabetic retinopathy.


Assuntos
Biomarcadores/sangue , Retinopatia Diabética/sangue , Fator de Crescimento Transformador beta/sangue , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/tratamento farmacológico , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Masculino , Terapia de Alvo Molecular , Curva ROC , Tomografia de Coerência Óptica
16.
World J Stem Cells ; 12(10): 1152-1170, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33178398

RESUMO

BACKGROUND: Adipose-derived mesenchymal stem cells (ASCs) are characterized by long-term self-renewal and a high proliferation rate. Under adequate conditions, they may differentiate into cells belonging to mesodermal, endodermal or ectodermal lineages. Pericytes support endothelial cells and play an important role in stabilizing the vessel wall at the microcirculation level. The loss of pericytes, as occurs in diabetic retinopathy, results in a breakdown of the blood-retina barrier (BRB) and infiltration of inflammatory cells. In this context, the use of pericyte-like differentiated ASCs may represent a valuable therapeutic strategy for restoring BRB damage. AIM: To test in vitro strategies to obtain pericyte-like differentiation of human ASCs (hASCs). METHODS: Different culture conditions were tested: hASCs cultured in a basal medium supplemented with transforming growth factor ß1; and hASCs cultured in a specific pericyte medium (PM-hASCs). In a further sample, pericyte growth supplement was omitted from the PM. In addition, cultures of human retinal pericytes (hRPCs) were used for comparison. Pericyte-like differentiation of hASCs was tested by immunocytochemical staining and western blotting to evaluate the expression of α-smooth muscle actin (α-SMA) and neural/glial antigen 2 (NG2). Interactions between human retinal endothelial cells (hRECs) and different groups of hASCs were investigated in co-culture experiments. In these cases, the expression of typical junctional proteins such as vascular endothelial-Cadherin, zonula occludens-1 and Occludin were assessed in hRECs. In an in vitro model of the BRB, values of trans-endothelial electrical resistance were measured when hRECs were co-cultured with various groups of pretreated hASCs. The values observed were compared with co-cultures of hRECs and hRPCs as well as with cultures of hRECs alone. Three-dimensional co-cultures of hRECs and hRPCs or pericyte-like hASCs in Matrigel were designed to assess their reciprocal localization. RESULTS: After 3-6 d of culture, α-SMA and NG2 immunocytochemistry showed that the closest pericyte-like phenotype was observed when hASCs were cultured in Pericyte Medium (PM-hASCs). In particular, α-SMA immunoreactivity, already visible at the basal level in pericytes and ASCs, was strongly increased only when transforming growth factor was added to the culture medium. NG2 expression, almost undetectable in most conditions, was substantially increased only in PM-hASCs. Immunocytochemical results were confirmed by western blot analysis. The presence of pericyte growth supplement seems to increase NG2 expression rather than α-SMA, in agreement with its role in maintaining pericytes in the proliferative state. In co-culture experiments, immunoreactivity of vascular endothelial-Cadherin, zonula occludens-1 and Occludin was considerably increased in hRECs when hRPCs or PM-hASCs were also present. Supporting results were found by trans-endothelial electrical resistance measurements, gathered at 3 and 6 d of co-culture. The highest resistance values were obtained when hRECs were co-cultured with hRPCs or PM-hASCs. The pericyte-like phenotype of PM-hASCs was also confirmed in three-dimensional co-cultures in Matrigel, where PM-hASCs and hRPCs similarly localized around the tubular formations made by hRECs. CONCLUSION: PM-hASCs seem able to strengthen the intercellular junctions between hRECs, likely reinforcing the BRB; thus, hASC-based therapeutic approaches may be developed to restore the integrity of retinal microcirculation.

17.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33065984

RESUMO

Early blood retinal barrier (BRB) dysfunction induced by hyperglycemia was related to increased pro-inflammatory activity of phospholipase A2 (PLA2) and the upregulation of vascular endothelial growth factor A (VEGF-A). Here, we tested the role of VEGF-A in high glucose (HG)-induced damage of human retinal endothelial cells (HRECs) mediated by Ca++-dependent (cPLA2) and Ca++-independent (iPLA2) PLA2s. HRECs were treated with normal glucose (5 mM, NG) or high glucose (25 mM, HG) for 48 h with or without the VEGF-trap Aflibercept (Afl, 40 µg/mL), the cPLA2 inhibitor arachidonoyl trifluoromethyl ketone (AACOCF3; 15 µM), the iPLA2 inhibitor bromoenol lactone (BEL; 5 µM), or VEGF-A (80 ng/mL). Both Afl and AACOCF3 prevented HG-induced damage (MTT and LDH release), impairment of angiogenic potential (tube-formation), and expression of VEGF-A mRNA. Furthermore, Afl counteracted HG-induced increase of phospho-ERK and phospho-cPLA2 (immunoblot). VEGF-A in HG-medium increased glucose toxicity, through upregulation of phospho-ERK, phospho-cPLA2, and iPLA2 (about 55%, 45%, and 50%, respectively); immunocytochemistry confirmed the activation of these proteins. cPLA2 knockdown by siRNA entirely prevented cell damage induced by HG or by HG plus VEGF-A, while iPLA2 knockdown produced a milder protective effect. These data indicate that VEGF-A mediates the early glucose-induced damage in retinal endothelium through the involvement of ERK1/2/PLA2 axis activation.


Assuntos
Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosfolipases A2/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/farmacologia , Ácidos Araquidônicos/farmacologia , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Endotélio Vascular/citologia , Glucose/toxicidade , Humanos , Inibidores de Fosfolipase A2/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/farmacologia
18.
Biochem Pharmacol ; 168: 249-258, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31302133

RESUMO

Blood retinal barrier (BRB) breakdown is a hallmark of diabetic retinopathy, whose occurrence in early or later phases of the disease has not yet been completely clarified. Recent evidence suggests that hyperglycemia induces activation of the P2X7 receptor (P2X7R) leading to pericyte cell death. We herein investigated the role of P2X7R on retinal endothelial cells viability and expression of tight- and adherens-junctions following high glucose (HG) exposure. We found that HG elicited P2X7R activation and expression and release of the pro-inflammatory cytokine IL-1ß in human retinal endothelial cells (HRECs). Furthermore, HG exposure caused a decrease in HRECs viability and a damage of the BRB. JNJ47965567, a P2X7R antagonist, protected HRECs from HG-induced damage (LDH release) and preserved the BRB, as shown by transendothelial electrical resistance and cell junction morphology (ZO-1, claudin-5 and VE-cadherin). Moreover, JNJ47965567 treatment significantly decreased IL-1ß expression and release, elicited by HG. These data indicate that P2X7R plays an important role to regulate BRB integrity, in particular the block of this receptor was useful to counteract the damage elicited by HG in HRECs, and warranting further clinical evaluation of P2X7R antagonists for the treatment of diabetic macular edema.


Assuntos
Barreira Hematorretiniana/metabolismo , Células Endoteliais/metabolismo , Glucose/toxicidade , Receptores Purinérgicos P2X7/fisiologia , Retina/metabolismo , Barreira Hematorretiniana/efeitos dos fármacos , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Humanos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Piperazinas/farmacologia , Retina/citologia , Retina/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
19.
J Theor Biol ; 477: 1-13, 2019 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-31181240

RESUMO

We study the dynamics of a network Wilson--Cowan model (a system of connected Wilson--Cowan oscillators) for interacting excitatory and inhibitory neuron populations with time delays. Each node in this model corresponds to a population of neurons, including excitatory and inhibitory subpopulations, and hence it can be viewed as a metapopulation model. It is known that information transfer within each cortical area is not instantaneous, and therefore we consider a system of delay differential equations with two different kinds of discrete delays. We account for the time delay in information propagation between individual excitatory and inhibitory subpopulations at each node via intra-node time delays, and we account for time delay in information propagation between neuron populations at different nodes with inter-node time delays. The biologically relevant resting state solutions are oscillatory (stable limit cycles). After determining the influence of the coupling parameters between nodes, the intra-node delays, and the inter-node delays on the dynamics of the two coupled Wilson--Cowan oscillators, we then explore a variety of larger networks of 16 and 100 nodes, in order to determine how the network topology will influence time delayed Wilson--Cowan dynamics. We find that network structure can regularize or deregularize the dynamics, with networks of higher mean degree permitting stable limit cycles and networks with smaller mean degree yielding less regular dynamics (which may range from chaotic solutions, to solutions for which limit cycles collapse into steady states, which are biologically undesirable compared with the preferred stable limit cycles). Furthermore, heterogeneity in the degree distribution of the network (resulting from networks with nodes of varying degree) can result in asynchronous dynamics, even if at each node the local dynamics are that of a limit cycle, in contrast to the synchronization of dynamics between nodes seen when the degree of all nodes is equal. This suggests that homogeneous and well-connected networks permit robust limit cycles under time-delayed Wilson--Cowan dynamics, whereas heterogeneous or poorly connected networks may fail to provide such desirable dynamics, a phenomena akin to structural loss of neuron connections in neurodegenerative diseases.


Assuntos
Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...