Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cosmet Dermatol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38638000

RESUMO

BACKGROUND: During the sexual maturation, gluteal femoral adipose tissue is subjected to numerous modifications, not observable in other regions, in particular in women and less in men. Other authors described this region, but they used imaging techniques having lower resolution, than MRI proposed in this study. High resolution imaging techniques might provide important and more detailed information about the anatomy of gluteal femoral region. METHODS: This study has been performed using 7 T-magnetic resonance imaging and ultrastructural analysis in order to provide accurate description of the subcutaneous adipose tissue and dermis of gluteal femoral region. In this study specimens harvested from cadavers and form living patients have been analyzed. RESULTS: The results showed the presence of three layers: superficial, middle, and deep, characterized by different organization of fat lobules. High resolution imaging showed the adipose papilla that originates from dermis and protrude in subcutaneous adipose tissue. Adipose papilla is characterized by a peculiar morphology with a basement, a neck and a head and these elements represent the functional subunits of adipose papilla. Moreover, ultrastructural study evidenced the relationship between adipocytes and sweat glands, regulated by lipid vesicles. CONCLUSIONS: This study provides important information about subcutaneous and dermal fat anatomy of gluteal femoral region, improving the past knowledge, and move toward a better understanding of the cellulite physiopathology.

2.
Cells ; 12(16)2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37626834

RESUMO

Mesenchymal stem cells extracted from adipose tissue are particularly promising given the ease of harvest by standard liposuction and reduced donor site morbidity. This study proposes a novel enzymatic method for isolating stem cells using Vibrio alginolyticus collagenase, obtaining a high-quality product in a reduced time. Initially, the enzyme concentration and incubation time were studied by comparing cellular yield, proliferation, and clonogenic capacities. The optimized protocol was phenotypically characterized, and its ability to differentiate in the mesodermal lineages was evaluated. Subsequently, that protocol was compared with two Clostridium histolyticum-based collagenases, and other tests for cellular integrity were performed to evaluate the enzyme's effect on expanded cells. The best results showed that using a concentration of 3.6 mg/mL Vibrio alginolyticus collagenase allows extracting stem cells from adipose tissue after 20 min of enzymatic reaction like those obtained with Clostridium histolyticum-based collagenases after 45 min. Moreover, the extracted cells with Vibrio alginolyticus collagenase presented the phenotypic characteristics of stem cells that remain after culture conditions. Finally, it was seen that Vibrio alginolyticus collagenase does not reduce the vitality of expanded cells as Clostridium histolyticum-based collagenase does. These findings suggest that Vibrio alginolyticus collagenase has great potential in regenerative medicine, given its degradation selectivity by protecting vital structures for tissue restructuration.


Assuntos
Colagenases , Vibrio alginolyticus , Projetos de Pesquisa , Células-Tronco , Tecido Adiposo
3.
Biomedicines ; 11(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37371682

RESUMO

Cell-based therapy in regenerative medicine is a powerful tool that can be used both to restore various cells lost in a wide range of human disorders and in renewal processes. Stem cells show promise for universal use in clinical medicine, potentially enabling the regeneration of numerous organs and tissues in the human body. This is possible due to their self-renewal, mature cell differentiation, and factors release. To date, pluripotent stem cells seem to be the most promising. Recently, a novel stem cell niche, called multilineage-differentiating stress-enduring (Muse) cells, is emerging. These cells are of particular interest because they are pluripotent and are found in adult human mesenchymal tissues. Thanks to this, they can produce cells representative of all three germ layers. Furthermore, they can be easily harvested from fat and isolated from the mesenchymal stem cells. This makes them very promising, allowing autologous treatments and avoiding the problems of rejection typical of transplants. Muse cells have recently been employed, with encouraging results, in numerous preclinical studies performed to test their efficacy in the treatment of various pathologies. This review aimed to (1) highlight the specific potential of Muse cells and provide a better understanding of this niche and (2) originate the first organized review of already tested applications of Muse cells in regenerative medicine. The obtained results could be useful to extend the possible therapeutic applications of disease healing.

4.
Cell Transplant ; 32: 9636897231175968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37243545

RESUMO

Fat graft is widely used in plastic and reconstructive surgery. The size of the injectable product, the unpredictable fat resorption rates, and subsequent adverse effects make it tricky to inject untreated fat into the dermal layer. Mechanical emulsification of fat tissue, which Tonnard introduced, solves these problems, and the product obtained was called nanofat. Nanofat is widely used in clinical and aesthetic settings to treat facial compartments, hypertrophic and atrophic scars, wrinkle attenuation, skin rejuvenation, and alopecia. Several studies demonstrate that the tissue regeneration effects of nanofat are attributable to its rich content of adipose-derived stem cells. This study aimed to characterize Hy-Tissue Nanofat product by investigating morphology, cellular yield, adipose-derived stem cell (ASC) proliferation rate and clonogenic capability, immunophenotyping, and differential potential. The percentage of SEEA3 and CD105 expression was also analyzed to establish the presence of multilineage-differentiating stress-enduring (MUSE) cell. Our results showed that the Hy-Tissue Nanofat kit could isolate 3.74 × 104 ± 1.31 × 104 proliferative nucleated cells for milliliter of the treated fat. Nanofat-derived ASC can grow in colonies and show high differentiation capacity into adipocytes, osteocytes, and chondrocytes. Moreover, immunophenotyping analysis revealed the expression of MUSE cell antigen, making this nanofat enriched of pluripotent stem cell, increasing its potential in regenerative medicine. The unique characteristics of MUSE cells give a simple, feasible strategy for treating a variety of diseases.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Humanos , Alprostadil , Células Cultivadas , Tecido Adiposo , Obesidade , Transplante de Células-Tronco
5.
Facial Plast Surg ; 39(6): 679-685, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36791802

RESUMO

This article demonstrates the ability to use autologous crushed cartilage grafts in rhinoplasty with rapid recovery and optimal nasal functionality without any tissue damage and allows its rapid rejuvenation. Eligible patients underwent primary rhinoplasty using autologous crushed cartilage graft followed by microscopy imaging of the grafted tissue after recovery. Tissue and cytological analysis using optical microscopy, transmission electronic microscopy (TEM), and scanning electronic microscopy (SEM) showed complete viability of chondrocytes, formation of new collagen fibers, neo-perichondrium, neo-angiogenesis, and exhibiting optimal aesthetic outcome. The surgical approach is easy to perform, feasible, and less time-consuming, with excellent tissue rejuvenation and rapid recovery.


Assuntos
Rinoplastia , Humanos , Rinoplastia/métodos , Gelatina , Estética Dentária , Cartilagem/transplante , Nariz/cirurgia
6.
Tissue Eng Regen Med ; 19(3): 477-490, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35244884

RESUMO

BACKGROUND: Breast reconstruction after mastectomy using silicone implants is a surgical procedure that occasionally leads to capsular contracture formation. This phenomenon constitutes an important and persistent cause of morbidity, and no successful therapies are available to date. Recently, the use of acellular membranes as a protective material for silicone prostheses has been gaining attention due to their ability to prevent this adverse outcome. For this reason, the evaluation of the tissue-material integration and the induced biostimulation by acellular membranes results crucial. Evaluation of in vivo tissue integration and biostimulation induced by three different natural acellular collagen membranes. METHODS: Scanning electron microscopy was performed to analyse the membrane porosity and cells-biomaterial interaction in vitro, both in dry and wet conditions. Adipose-derived stem cells were cultured in the presence of membranes, and the colonisation capacity and differentiation potential of cells were assessed. In vivo tests and ex vivo analyses have been performed to evaluate dermal integration, absorption degree and biostimulation induced by the evaluated membrane. RESULTS: Analysis performed in vitro on the three different acellular dermal matrices evidenced that porosity and the morphological structure of membranes influence the liquid swelling ratio, affecting the cell mobility and the colonisation capacity. Moreover, the evaluated membranes influenced in different manner the adipose derived stem cells differentiation and their survival. In vivo investigation indicated that the absorption degree and the fluid accumulation surrounding the implant were membrane-dependent. Finally, ex vivo analysis confirmed the membrane-dependent behavior revealing different degree of tissue integration and biostimulation, such as adipogenic stimulation. CONCLUSION: The physico-chemical characteristics of the membranes play a key role in the biostimulation of the cellular environment inducing the development of well-organized adipose tissue.


Assuntos
Implante Mamário , Implantes de Mama , Implante Mamário/efeitos adversos , Implante Mamário/métodos , Implantes de Mama/efeitos adversos , Colágeno , Seguimentos , Mastectomia , Estudos Retrospectivos , Silicones
7.
Eur J Plast Surg ; 45(1): 1-25, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34728900

RESUMO

Regenerative medicine and surgery is a rapidly expanding branch of translational research in tissue engineering, cellular and molecular biology. To date, the methods to improve cell intake, survival, and isolation need to comply with a complex and still unclear regulatory frame, becoming everyday more restrictive and often limiting the effectiveness and outcome of the therapeutic choices. Thus, the authors developed a novel 360° regenerative strategy based on the synergic action of several new components called the bioactive composite therapies (BACTs) to improve grafted cells intake, and survival in total compliance with the legal and ethical limits of the current regulatory frame. The rationale at the origin of this new technology is based on the evidence that cells need supportive substrate to survive in vitro and this observation, applying the concept of translational medicine, is true also in vivo. Bioactive composite mixtures (BACMs) are tailor-made bioactive mixtures containing several bioactive components that support cells' survival and induce a regenerative response in vivo by stimulating the recipient site to act as an in situ real bioreactor. Many different tissues have been used in the past for the isolation of cells, molecules, and growth factors, but the adipose tissue and its stromal vascular fraction (SVF) remains the most valuable, abundant, safe, and reliable source of regenerative components and particularly of adipose-derived stems cells (ADSCs). The role of plastic surgeons as the historical experts in all the most advanced techniques for harvesting, manipulating, and grafting adipose tissue is fundamental in this constant process of expansion of regenerative procedures. In this article, we analyze the main causes of cell death and the strategies for preventing it, and we present all the technical steps for preparing the main components of BACMs and the different mixing modalities to obtain the most efficient regenerative action on different clinical and pathological conditions. The second section of this work is dedicated to the logical and sequential evolution from simple bioactive composite grafts (BACGs) that distinguished our initial approach to regenerative medicine, to BACTs where many other fundamental technical steps are analyzed and integrated for supporting and enhancing the most efficient regenerative activity. Level of Evidence: Not gradable.

8.
Biomedicines ; 9(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34829851

RESUMO

Pancreatic cancer (PC) represents an intriguing topic for researchers. To date, the prognosis of metastasized PC is poor with just 7% of patients exceeding a five-year survival period. Thus, molecular modifications of existing drugs should be developed to change the course of the disease. Our previously generated nanocages of Mitoxantrone (MIT) encapsulated in human H-chain Ferritin (HFt), designated as HFt-MP-PASE-MIT, has shown excellent tumor distribution and extended serum half-life meriting further investigation for PC treatment. Thus, in this study, we used the same nano-formulation to test its cytotoxicity using both in vitro and in vivo assays. Interestingly, both encapsulated and free-MIT drugs demonstrated similar killing capabilities on PaCa44 cell line. Conversely, in vivo assessment in a subcutaneous PaCa44 tumor model of PC demonstrated a remarkable capability for encapsulated MIT to control tumor growth and improve mouse survival with a median survival rate of 65 vs. 33 days for loaded and free-MIT, respectively. Interestingly, throughout the course of mice treatment, MIT encapsulation did not present any adverse side effects as confirmed by histological analysis of various murine tissue organs and body mass weights. Our results are promising and pave the way to effective PC targeted chemotherapy using our HFt nanodelivery platforms.

9.
J Exp Clin Cancer Res ; 40(1): 63, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568214

RESUMO

BACKGROUND: Ferritin receptor (CD71) is an example of a very attractive cancer target, since it is highly expressed in virtually all tumor types, including metastatic loci. However, this target can be considered to be inaccessible to conventional target therapies, due to its presence in many healthy tissues. Here, we describe the preclinical evaluation of a tumor proteases-activatable human ferritin (HFt)-based drug carrier (The-0504) that is able to selectively deliver the wide-spectrum topoisomerase I inhibitor Genz-644282 to CD71-expressing tumors, preventing the limiting toxic effects associated with CD71-targeting therapies. METHODS: CD71 expression was evaluated using flow cytometry and immunohistochemistry techniques. The-0504 antiproliferative activity towards several cancer cell lines was assessed in vitro. The-0504 antitumor efficacy and survival benefit were evaluated in different human tumors, which had been grown either as xenografts or patient-derived xenografts in mice. The-0504 toxicology profile was investigated in multiple-cycle repeat-dose study in rodents. RESULTS: In vitro studies indicate that The-0504 is highly specific for CD71 expressing cells, and that there is a relationship between CD71 levels and The-0504 anticancer activity. In vivo treatments with The-0504 showed a remarkable efficacy, eradicating several human tumors of very diverse and aggressive histotypes, such as pancreas, liver and colorectal carcinomas, and triple-negative breast cancer. CONCLUSIONS: Durable disease-free survival, persistent antitumor responses after discontinuation of treatment and favorable toxicology profile make The-0504 an ideal candidate for clinical development as a novel, CD71-targeted, low-toxicity alternative to chemotherapy.


Assuntos
Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Ferritinas/metabolismo , Nanoestruturas/química , Neoplasias/genética , Receptores da Transferrina/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Ratos
10.
Cells ; 11(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35011569

RESUMO

One of the mechanisms that characterizes the aging process of different organs is the accumulation of fat. Different authors have demonstrated that adipose tissue replaces the loss of other cell types, deriving from mesenchymal cells. During aging, there is substitution or trans-differentiation of mesenchymal cells with other cells having the same embryological origin. Newly formed adipocytes were also observed in the trabecular matrix of elderly people's bones, associated with myeloid cells. In this study, we have investigated the relationship between immature myeloid-derived suppressor cells (I-MDSCs) and mesenchymal stem cells (MSCs) in bone marrow (BM) samples harvested from 57 patients subjected to different orthopedic surgeries. Patients aged from 18 to 92 years were considered in order to compare the cellular composition of bone marrow of young and elderly people, considered a biomarker of immunity, inflammation, and bone preservation. The I-MDSC percentage was stable during aging, but in elderly people, it was possible to observe a strong basal immunosuppression of autologous and heterologous T cells' proliferation. We hypothesized that this pattern observed in elders depends on the progressive accumulation in the BM of activating stimuli, including cell-cell contact, or the production of different cytokines and proteins that induce the differentiation of bone marrow mesenchymal stem cells in adipocytes. The collected data provided underline the importance of specific biomarkers of aging that promote a reduction in immune response and incremented inflammatory pathways, leading to bone reabsorption in elderly people.


Assuntos
Envelhecimento/metabolismo , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Osso e Ossos/imunologia , Imunidade , Células-Tronco Mesenquimais/metabolismo , Células Mieloides/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/metabolismo , Solubilidade , Doadores de Tecidos , Adulto Jovem
11.
Microsc Res Tech ; 84(6): 1155-1162, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33301210

RESUMO

The implantation of breast prostheses for both aesthetic and reconstructive purposes has been growing exponentially in the last 20 years. Safety and prosthesis lifespan are majorly debated issues in relation to the correlated long-term complications. Mainly the periprosthetic capsule that develops around the implant is often the cause of complications and particularly for macrotextured silicone breast implants. Some reports have tried to elucidate the mechanism by which macrotextured silicone implants undergo damage and cause double capsule formation. In this study, we investigated the morphological characteristics of double capsule of macrotextured implants surgically removed from patients. With the use of microscopy techniques, this work analyzed the newly formed tissue observed in the interaction between synthetic and biological surfaces.


Assuntos
Implantes de Mama , Silicones , Implantes de Mama/efeitos adversos , Tecido Conjuntivo , Humanos , Próteses e Implantes
12.
Pharmaceutics ; 12(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092088

RESUMO

Gastrointestinal tumors, including pancreatic and colorectal cancers, represent one of the greatest public health issues worldwide, leading to a million global deaths. Recent research demonstrated that the human heavy chain ferritin (HFt) can encapsulate different types of drugs in its cavity and can bind to its receptor, CD71, in several solid and hematological tumors, thus highlighting the potential use of ferritin for tumor-targeting therapies. Here, we describe the development and characterization of a novel nanomedicine based on the HFt that is named The-0504. In particular, this novel system is a nano-assembly comprising an engineered version of HFt that entraps about 80 molecules of a potent, wide-spectrum, non-camptothecin topoisomerase I inhibitor (Genz-644282). The-0504 can be produced by a standardized pre-industrial process as a pure and homogeneously formulated product with favourable lyophilization properties. The preliminary anticancer activity was evaluated in cultured cancer cells and in a mouse model of pancreatic cancer. Overall results reported here make The-0504 a candidate for further preclinical development against CD-71 expressing deadly tumors.

13.
J Tissue Eng Regen Med ; 14(9): 1213-1226, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32598097

RESUMO

Fat grafting is a well-established procedure in reconstructive, aesthetic, and regenerative medicine, in particular due to the presence in the adipose tissue of a high concentration of mesenchymal stem cells. The need to reduce fat processing times, for an immediate clinical use and regulatory restrictions on the degree of manipulation of human tissues, has led to the development of numerous devices for the mechanical, nonenzymatic processing of adipose tissue. The aim of this study is to describe the state of the art of mechanical devices used for fat processing, performing a technical analysis of the currently commercially available devices. This should facilitate the development of new devices that improve therapeutic results.


Assuntos
Lipectomia/instrumentação , Tecido Adiposo/transplante , Automação , Humanos
14.
Int J Mol Sci ; 21(6)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197394

RESUMO

: Background: Cellulite is a condition in which the skin has a dimpled lumpy appearance. The main causes of cellulite development, studied until now, comprehends modified sensitivity to estrogens, the damage of microvasculature present among dermis and hypodermis. The differences of adipose tissue architecture between male and female might make female more susceptible to cellulite. Adipose tissue is seen to be deeply modified during cellulite development. Our study tried to understand the overall features within and surrounding cellulite to apply the best therapeutic approach. METHODS: Samples of gluteal femoral area were collected from cadavers and women who had undergone surgical treatment to remove orange peel characteristics on the skin. Samples from cadavers were employed for an accurate study of cellulite using magnetic resonance imaging at 7 Tesla and for light microscopy. Specimens from patients were employed for the proteomic analysis, which was performed using high resolution mass spectroscopy (MS). Stromal vascular fraction (SVF) was obtained from the samples, which was studied using MS and flow cytometry. RESULTS: light and electron microscopy of the cellulite affected area showed a morphology completely different from the other usual adipose depots. In cellulite affected tissues, sweat glands associated with adipocytes were found. In particular, there were vesicles in the extracellular matrix, indicating a crosstalk between the two different components. Proteomic analysis showed that adipose tissue affected by cellulite is characterized by high degree of oxidative stress and by remodeling phenomena. CONCLUSIONS: The novel aspects of this study are the peculiar morphology of adipose tissue affected by cellulite, which could influence the surgical procedures finalized to the reduction of dimpling, based on the collagen fibers cutting. The second novel aspect is the role played by the mesenchymal stem cells isolated from stromal vascular fraction of adipose tissue affected by cellulite.


Assuntos
Celulite , Derme , Espectrometria de Massas , Proteômica , Gordura Subcutânea , Adulto , Celulite/metabolismo , Celulite/patologia , Derme/metabolismo , Derme/ultraestrutura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gordura Subcutânea/metabolismo , Gordura Subcutânea/ultraestrutura
15.
Cells ; 10(1)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383682

RESUMO

The stromal vascular fraction (SVF) consists of a heterogeneous population of stem and stromal cells, generally obtained from adipose tissue by enzymatic digestion. For human cell-based therapies, mechanical process methods to obtain SVF represent an advantageous approach because they have fewer regulatory restrictions for their clinical use. The aim of this study was to characterize a novel commercial system for obtaining SVF from adipose tissue by a mechanical approach without substantial manipulations. Lipoaspirate samples collected from 27 informed patients were processed by a simple and fast mechanical system (by means of Hy-Tissue SVF). The Hy-Tissue SVF product contained a free cell fraction and micro-fragments of stromal connective tissue. The enzymatic digestion of the micro-fragments increased the yield of free cells (3.2 times) and CFU-F (2.4 times). Additionally, 10% of free cells from SVF were positive for CD34+, suggesting the presence of endothelial cells, pericytes, and potential adipose-derived stem cells (ADSC). Moreover, the SVF cells were able to proliferate and differentiate in vitro toward adipocytes, osteocytes, and chondrocytes. The immunophenotypic analysis of expanded cells showed positivity for typical mesenchymal stem cell markers. The Hy-Tissue SVF system allows the isolation of stromal vascular fraction, making this product of potential interest in regenerative medicine.


Assuntos
Tecido Adiposo/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa/métodos , Idoso , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Pessoa de Meia-Idade
16.
Aesthet Surg J ; 40(4): 448-459, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31504155

RESUMO

BACKGROUND: Tissue expanders are widely utilized in plastic surgery. Traditional expanders usually are "inflatable balloons," which are planned to grow additional skin and/or to create space to be filled, for example, with an implant. In very recent years, reports suggest that negative pressure created by an external device (ie, Brava) induces both skin expansion and adipogenesis. OBJECTIVES: The authors evaluated and assessed the adipogenetic potential of a novel internal tissue expander in an in vivo animal model. METHODS: New Zealand female rabbits were enrolled in the study. A prototype spiral inner tissue expander was employed. It consisted of a-dynamic conic expander (DCE) with a valve at the end: when empty, it is flat (Archimedean spiral), whereas when filled with a fluid, it takes a conic shape. Inside the conic spiral, a negative pressure is therefore created. DCE is implanted flat under the latissimus dorsi muscle in experimental animals (rabbit) and then filled to reach the conical shape. Animals were investigated with magnetic resonance imaging, histology, and transmission electronic microscopy at 3, 6, and 12 months. RESULTS: Magnetic resonance imaging revealed a marked increase in newly formed adipose tissue, reaching its highest amount at 12 months after the DCE implantation. Histology confirmed the existence of new adipocytes, whereas transmission electronic microscopy ultrastructure confirmed that most of these new cells were mature adipocytes. CONCLUSIONS: Tensile stress, associated with negative-pressure expanders, generated newly white subcutaneous adipose tissue.


Assuntos
Implantes de Mama , Procedimentos de Cirurgia Plástica , Tecido Adiposo , Animais , Feminino , Coelhos , Gordura Subcutânea , Expansão de Tecido , Dispositivos para Expansão de Tecidos
17.
Contrast Media Mol Imaging ; 2019: 4096706, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31089325

RESUMO

Purpose: To investigate the heterogeneous enhancement pattern in normal lymph nodes of healthy mice by different albumin-binding contrast agents. Methods: The enhancement of normal lymph nodes was assessed in mice by dynamic contrast-enhanced MRI (DCE-MRI) after the administration of two contrast agents characterized by different albumin-binding properties: gadopentetate dimeglumine (Gd-DTPA) and gadobenate dimeglumine (Gd-BOPTA). To take into account potential heterogeneities of the contrast uptake in the lymph nodes, k-means cluster analysis was performed on DCE-MRI data. Cluster spatial distribution was visually assessed. Statistical comparison among clusters and contrast agents was performed on semiquantitative parameters (AUC, wash-in rate, and wash-out rate) and on the relative size of the segmented clusters. Results: Cluster analysis of DCE-MRI data revealed at least two main clusters, localized in the outer portion and in the inner portion of each lymph node. With both contrast agents, AUC (p < 0.01) and wash-in (p < 0.05) rates were greater in the inner cluster, which also showed a steeper wash-out rate than the outer cluster (Gd-BOPTA, p < 0.01; Gd-DTPA, p=0.056). The size of the outer cluster was greater than that of the inner cluster by Gd-DTPA (p < 0.05) and Gd-BOPTA (p < 0.01). The enhancement pattern of Gd-DTPA was not significantly different from the enhancement pattern of Gd-BOPTA. Conclusion: DCE-MRI in normal lymph nodes shows a characteristic heterogeneous pattern, discriminating the periphery and the central portion of the lymph nodes. Such a pattern deserves to be investigated as a diagnostic marker for lymph node staging.


Assuntos
Meios de Contraste/farmacologia , Gadolínio DTPA/farmacologia , Linfonodos/diagnóstico por imagem , Meglumina/análogos & derivados , Compostos Organometálicos/farmacologia , Animais , Humanos , Aumento da Imagem , Linfonodos/patologia , Imageamento por Ressonância Magnética/métodos , Meglumina/farmacologia , Camundongos
18.
Eur J Histochem ; 62(4)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30362673

RESUMO

Published studies regarding Bichat fat pad focused, quite exclusively, on the implant of this adipose depot for different facial portions reconstruction. The regenerative components of Bichat fat pad were poorly investigated. The present study aimed to describe by an ultrastructural approach the Bichat fat pad, providing novel data at the ultrastructural and cellular level. This data sets improve the knowledge about the usefulness of the Bichat fat pad in regenerative and reconstructive surgery. Bichat fat pads were harvested form eight patients subjected to maxillofacial, dental and aesthetic surgeries. Biopsies were used for the isolation of mesenchymal cell compartment and for ultrastructural analysis. Respectively, Bichat fat pads were either digested and placed in culture for the characterization of mesenchymal stem cells (MSCs) or, were fixed in glutaraldehyde 2% and processed for transmission or scanning electron microscopy. Collected data showed very interesting features regarding the cellular composition of the Bichat fat pad and, in particular, experiments aimed to characterized the MSCs showed the presence of a sub-population of MSCs characterized by the expression of specific markers that allow to classify them as multilineage differentiating stress enduring cells.  This data set allows to collect novel information about regenerative potential of Bichat fat pad that could explain the success of its employment in reconstructive and regenerative medicine.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/fisiologia , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/ultraestrutura , Adulto , Feminino , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Regeneração
19.
Eur J Histochem ; 62(3)2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176704

RESUMO

Ozone is a strong oxidant, highly unstable atmospheric gas. Its medical use at low concentrations has been progressively increasing as an alternative/adjuvant treatment for several diseases. In this study, we investigated the effects of mild ozonisation on human adipose-derived adult stem (hADAS) cells i.e., mesenchymal stem cells occurring in the stromal-vascular fraction of the fat tissue and involved in the tissue regeneration processes. hADAS cells were induced to differentiate into the adipoblastic lineage, and the effect of low ozone concentrations on the adipogenic process was studied by combining histochemical, morphometric and ultrastructural analyses. Our results demonstrate that ozone treatment promotes lipid accumulation in hADAS without inducing deleterious effects, thus paving the way to future studies aimed at elucidating the effect of mild ozonisation on adipose tissue for tissue regeneration and engineering.


Assuntos
Adipogenia/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Células-Tronco Adultas/efeitos dos fármacos , Ozônio/farmacologia , Células Cultivadas , Humanos , Gotículas Lipídicas/química , Microscopia Eletrônica de Transmissão , Coloração e Rotulagem
20.
Contrast Media Mol Imaging ; 2018: 2198703, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116160

RESUMO

Magnetic fluid hyperthermia (MFH) with chemically synthesized nanoparticles is currently used in clinical trials as it destroys tumor cells with an extremely localized deposition of thermal energy. In this paper, we investigated an MFH protocol based on magnetic nanoparticles naturally produced by magnetotactic bacteria: magnetosomes. The efficacy of such protocol is tested in a xenograft model of glioblastoma. Mice receive a single intratumoral injection of magnetosomes, and they are exposed three times in a week to an alternating magnetic field with concurrent temperature measurements. MRI is used to visualize the nanoparticles and to monitor tumor size before and after the treatment. Statistically significant inhibition of the tumor growth is detected in subjects exposed to the alternating magnetic field compared to control groups. Moreover, thanks to magnetosomes high transversal relaxivity, their effective delivery to the tumor tissue is monitored by MRI. It is apparent that the efficacy of this protocol is limited by inhomogeneous delivery of magnetosomes to tumor tissue. These results suggest that naturally synthesized magnetosomes could be effectively considered as theranostic agent candidates for hyperthermia based on iron oxide nanoparticles.


Assuntos
Glioblastoma/diagnóstico , Glioblastoma/terapia , Magnetossomos/química , Magnetospirillum/química , Nanomedicina Teranóstica , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioblastoma/patologia , Imageamento por Ressonância Magnética , Magnetossomos/ultraestrutura , Masculino , Camundongos Nus , Temperatura , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...