Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945439

RESUMO

Resting-state functional connectivity (FC) is suggested to be cross-sectionally associated with both vascular burden and Alzheimer's disease (AD) pathology. For instance, studies in pre-clinical AD subjects have shown increases of cerebral spinal fluid soluble platelet-derived growth factor receptor-ß (CSF sPDGFRß, a marker of BBB breakdown) but have not demonstrated if this vascular impairment affects neuronal dysfunction. It's possible that increased levels of sPDGFRß in the CSF may correlate with impaired FC in metabolically demanding brain regions (i.e. Default Mode Network, DMN). Our study aimed to investigate the relationship between these two markers in older individuals that were cognitively normal and had cognitive impairment. Eighty-nine older adults without dementia from the University of Southern California were selected from a larger cohort. Region of interest (ROI) to ROI analyses were conducted using DMN seed regions. Linear regression models measured significant associations between BOLD FC strength among seed-target regions and sPDGFRß values, while covarying for age and sex. Comparison of a composite ROI created by averaging FC values between seed and all target regions among cognitively normal and impaired individuals was also examined. Using CSF sPDGFRß as a biomarker of BBB breakdown, we report that increased breakdown correlated with decreased functional connectivity in DMN areas, specifically the PCC while the hippocampus exhibited an interaction effect using CDR score. We conclude that BBB breakdown as measured by CSF sPDGFRß affects neural networks resulting in decreased functional connections that leads to cognitive dysfunction.

2.
Neurobiol Aging ; 86: 112-122, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31870643

RESUMO

It is now recognized that understanding how neuroinflammation affects brain function may provide new insights into Alzheimer's pathophysiology. Tumor necrosis factor (TNF)-α, an inflammatory cytokine marker, has been implicated in Alzheimer's disease (AD), as it can impair neuronal function through suppression of long-term potentiation. Our study investigated the relationship between cerebrospinal fluid TNF-α and functional connectivity (FC) in a cohort of 64 older adults (µ age = 69.76 years; 30 cognitively normal, 34 mild AD). Higher cerebrospinal fluid TNF-α levels were associated with lower FC among brain regions important for high-level decision-making, inhibitory control, and memory. This effect was moderated by apolipoprotein E-ε4 (APOE4) status. Graph theory metrics revealed there were significant differences between APOE4 carriers at the node level, and by diagnosis at the network level suggesting global brain network dysfunction in participants with AD. These findings suggest proinflammatory mechanisms may contribute to reduced FC in regions important for high-level cognition. Future studies are needed to understand the role of inflammation on brain function and clinical progression, especially in APOE4 carriers.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Apolipoproteína E4 , Encéfalo/fisiopatologia , Função Executiva , Heterozigoto , Fator de Necrose Tumoral alfa/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Inflamação , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA