Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(4): 2619-2630, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38294341

RESUMO

Targeting microtubules is the most effective wide-spectrum pharmacological strategy in antitumoral chemotherapy, and current research focuses on reducing main drawbacks: neurotoxicity and resistance. PM534 is a novel synthetic compound derived from the Structure-Activity-Relationship study on the natural molecule PM742, isolated from the sponge of the order Lithistida, family Theonellidae, genus Discodermia (du Bocage 1869). PM534 targets the entire colchicine binding domain of tubulin, covering four of the five centers of the pharmacophore model. Its nanomolar affinity and high retention time modulate a strikingly high antitumor activity that efficiently overrides two resistance mechanisms in cells (detoxification pumps and tubulin ßIII isotype overexpression). Furthermore, PM534 induces significant inhibition of tumor growth in mouse xenograft models of human non-small cell lung cancer. Our results present PM534, a highly effective new compound in the preclinical evaluation that is currently in its first human Phase I clinical trial.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Colchicina/metabolismo , Tubulina (Proteína)/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Microtúbulos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células
2.
Nat Commun ; 14(1): 6548, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848415

RESUMO

Autophosphorylation controls the transition between discrete functional and conformational states in protein kinases, yet the structural and molecular determinants underlying this fundamental process remain unclear. Here we show that c-terminal Tyr 530 is a de facto c-Src autophosphorylation site with slow time-resolution kinetics and a strong intermolecular component. On the contrary, activation-loop Tyr 419 undergoes faster kinetics and a cis-to-trans phosphorylation switch that controls c-terminal Tyr 530 autophosphorylation, enzyme specificity, and strikingly, c-Src non-catalytic function as a substrate. In line with this, we visualize by X-ray crystallography a snapshot of Tyr 530 intermolecular autophosphorylation. In an asymmetric arrangement of both catalytic domains, a c-terminal palindromic phospho-motif flanking Tyr 530 on the substrate molecule engages the G-loop of the active kinase adopting a position ready for entry into the catalytic cleft. Perturbation of the phospho-motif accounts for c-Src dysfunction as indicated by viral and colorectal cancer (CRC)-associated c-terminal deleted variants. We show that c-terminal residues 531 to 536 are required for c-Src Tyr 530 autophosphorylation, and such a detrimental effect is caused by the substrate molecule inhibiting allosterically the active kinase. Our work reveals a crosstalk between the activation and c-terminal segments that control the allosteric interplay between substrate- and enzyme-acting kinases during autophosphorylation.


Assuntos
Quinases da Família src , Fosforilação , Proteína Tirosina Quinase CSK/metabolismo , Domínio Catalítico , Quinases da Família src/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834876

RESUMO

Ribosome synthesis is a complex process that involves a large set of protein trans-acting factors, among them DEx(D/H)-box helicases. These are enzymes that carry out remodelling activities onto RNAs by hydrolysing ATP. The nucleolar DEGD-box protein Dbp7 is required for the biogenesis of large 60S ribosomal subunits. Recently, we have shown that Dbp7 is an RNA helicase that regulates the dynamic base-pairing between the snR190 small nucleolar RNA and the precursors of the ribosomal RNA within early pre-60S ribosomal particles. As the rest of DEx(D/H)-box proteins, Dbp7 has a modular organization formed by a helicase core region, which contains conserved motifs, and variable, non-conserved N- and C-terminal extensions. The role of these extensions remains unknown. Herein, we show that the N-terminal domain of Dbp7 is necessary for efficient nuclear import of the protein. Indeed, a basic bipartite nuclear localization signal (NLS) could be identified in its N-terminal domain. Removal of this putative NLS impairs, but does not abolish, Dbp7 nuclear import. Both N- and C-terminal domains are required for normal growth and 60S ribosomal subunit synthesis. Furthermore, we have studied the role of these domains in the association of Dbp7 with pre-ribosomal particles. Altogether, our results show that the N- and C-terminal domains of Dbp7 are important for the optimal function of this protein during ribosome biogenesis.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/metabolismo , Ribossomos/metabolismo , RNA Ribossômico/metabolismo , Proteínas Nucleares/genética , Proteínas Ribossômicas/metabolismo , Precursores de RNA/genética
4.
J Adv Res ; 45: 87-100, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35595215

RESUMO

INTRODUCTION: The structural and dynamic determinants that confer highly selective RET kinase inhibition are poorly understood. OBJECTIVES: To explore the druggability landscape of the RET active site in order to uncover structural and dynamic vulnerabilities that can be therapeutically exploited. METHODS: We apply an integrated structural, computational and biochemical approach in order to explore the druggability landscape of the RET active site. RESULTS: We demonstrate that the that the druggability landscape of the RET active site is determined by the conformational setting of the ATP-binding (P-) loop and its coordination with the αC helix. Open and intermediate P-loop structures display additional druggable vulnerabilities within the active site that were not exploited by first generation RET inhibitors. We identify a cryptic pocket adjacent to the catalytic lysine formed by K758, L760, E768 and L772, that we name the post-lysine pocket, with higher druggability potential than the adenine-binding site and with important implications in the regulation of the phospho-tyrosine kinase activity. Crystal structure and simulation data show that the binding mode of highly-selective RET kinase inhibitors LOXO-292 and BLU-667 is controlled by a synchronous open P-loop and αC-in configuration that allows accessibility to the post-lysine pocket. Molecular dynamics simulations show that these inhibitors efficiently occupy the post-lysine pocket with high stability through the simulation time-scale (300 ns), with both inhibitors forming hydrophobic contacts further stabilized by pi-cation interactions with the catalytic K758. Engineered mutants targeting the post-lysine pocket impact on inhibitor binding and sensitivity, as well as RET tyrosine kinase activity. CONCLUSIONS: The identification of the post-lysine pocket as a new druggable vulnerability in the RET kinase and its exploitation by second generation RET inhibitors have important implications for future drug design and the development of personalized therapies for patients with RET-driven cancers.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-ret , Humanos , Proteínas Proto-Oncogênicas c-ret/química , Proteínas Proto-Oncogênicas c-ret/metabolismo , Lisina , Simulação de Dinâmica Molecular , Conformação Molecular
5.
Nat Commun ; 12(1): 6153, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686656

RESUMO

Synthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit.


Assuntos
RNA Helicases DEAD-box/metabolismo , Chaperonas Moleculares/metabolismo , RNA Nucleolar Pequeno/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Pareamento de Bases , RNA Helicases DEAD-box/genética , Chaperonas Moleculares/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biogênese de Organelas , Dobramento de RNA , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , Subunidades Ribossômicas Maiores de Eucariotos/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
6.
Gene ; 663: 101-109, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29653229

RESUMO

The exon junction complex (EJC) is a key element of the splicing machinery. The EJC core is composed of eIF4A3, MAGO, Y14 and MLN51. Few accessory proteins, such as CWC22 or UPF3, bind transiently to the EJC. The EJC has been implicated in the control of the splicing of long introns. To ascertain whether the EJC controls the splicing of short introns, we used Paramecium tetraurelia as a model organism, since it has thousands of very tiny introns. To elucidate whether EJC affects intron splicing in P. tetraurelia, we searched for EJC protein-coding genes, and silenced those genes coding for eIF4A3, MAGO and CWC22. We found that P. tetraurelia likely assembles an active EJC with only three of the core proteins, since MLN51 is lacking. Silencing of eIF4A3 or CWC22 genes, but not that of MAGO, caused lethality. Silencing of the MAGO gene caused either an increase, decrease, or no change in intron retention levels of some intron-containing mRNAs used as reporters. We suggest that a fine-tuning expression of EJC genes is required for steady intron removal in P. tetraurelia. Taking into consideration our results and those published by others, we conclude that the EJC controls splicing independently of the intron size.


Assuntos
Proteínas Nucleares/metabolismo , Paramecium tetraurellia/genética , Splicing de RNA , Inativação Gênica , Íntrons , Proteínas Nucleares/genética , Paramecium tetraurellia/crescimento & desenvolvimento , Paramecium tetraurellia/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , RNA de Protozoário/genética
7.
Res Microbiol ; 165(10): 841-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25463387

RESUMO

Nonsense-mediated decay recognises mRNAs containing premature termination codons. One of its components, UPF3, is a molecular link bridging through its binding to the exon junction complex nonsense-mediated decay and splicing. In protists UPF3 has not been identified yet. We report that Paramecium tetraurelia bears an UPF3 gene and that it has a role in nonsense-mediated decay. Interestingly, the identified UPF3 has not conserved the essential amino acids required to bind the exon junction complex. Though, our data indicates that this ciliate bears genes coding for core proteins of the exon junction complex.


Assuntos
Códon sem Sentido , Paramecium/genética , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Paramecium/química , Proteínas de Protozoários/química , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...