Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Antioxidants (Basel) ; 12(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37627507

RESUMO

The total antioxidant capacity (TAC) has been related to the development of and complications associated with chronic diseases, but its importance during obesity is not entirely clear. We conducted a systematic review and meta-analysis to clarify whether there are differences or similarities in the TAC between subjects with obesity (SO) and subjects with normal weight (NW). Following the recommendations of PRISMA and Cochrane, we performed a systematic search in the PubMed, Scopus, Web of Science, Cochrane, and PROSPERO databases, identifying 1607 studies. Among these, 22 studies were included in the final analysis, comprising 3937 subjects (1665 SO and 2272 NW) in whom serum TAC was measured, and from these 19,201 subjects, the correlation of serum TAC with anthropo-metabolic parameters was also estimated. The Newcastle-Ottawa method was used for the evaluation of the risk of bias. Using a random-effect model (REM), TAC was reduced in SO independently of age (SMD, -0.86; 95% CI -1.38 to -0.34; p = 0.0012), whereas malondialdehyde (SMD, 1.50; 95% CI 0.60 to 2.41), oxidative stress index (SMD, 1.0; 95% CI 0.16 to 1.84), and total oxidant status (SMD, 0.80; 0.22 to 1.37) were increased. There were seven significant pooled correlations of TAC with anthropometric and metabolic parameters: weight (r = -0.17), hip circumference (r= -0.11), visceral adipose index (r = 0.29), triglycerides (r = 0.25), aspartate aminotransferase (r = 0.41), alanine aminotransferase (r = 0.38), and uric acid (r = 0.53). Our results confirm a decrease in TAC and an increase in markers of oxidative stress in SO and underpin the importance of these serum biomarkers in obesity.

2.
Neuro Oncol ; 25(2): 303-314, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35802478

RESUMO

BACKGROUND: Glioblastoma is the most common and devastating primary brain cancer. Radiotherapy is standard of care; however, it is associated with brain radiation toxicity (BRT). This study used a multi-omics approach to determine whether BRT-related genes (RGs) harbor survival prognostic value and whether their encoded proteins represent novel therapeutic targets for glioblastoma. METHODS: RGs were identified through analysis of single-nucleotide variants associated with BRT (R-SNVs). Functional relationships between RGs were established using Protein-Protein Interaction networks. The influence of RGs and their functional groups on glioblastoma prognosis was evaluated using clinical samples from the Glioblastoma Bio-Discovery Portal database and validated using the Chinese Glioma Genome Atlas dataset. The identification of clusters of radiotoxic and putative pathogenic variants in proteins encoded by RGs was achieved by computational 3D structural analysis. RESULTS: We identified the BRT-related 15CAcBRT molecular signature with prognostic value in glioblastoma, by analysis of the COMT and APOE protein functional groups. Its external validation confirmed clinical relevance independent of age, MGMT promoter methylation status, and IDH mutation status. Interestingly, the genes IL6, APOE, and MAOB documented significant gene expression levels alteration, useful for drug repositioning. Biological networks associated with 15CAcBRT signature involved pathways relevant to cancer and neurodegenerative diseases. Analysis of 3D clusters of radiotoxic and putative pathogenic variants in proteins coded by RGs unveiled potential novel therapeutic targets in neuro-oncology. CONCLUSIONS: 15CAcBRT is a BRT-related molecular signature with prognostic significance for glioblastoma patients and represents a hub for drug repositioning and development of novel therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Transcriptoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Prognóstico , Encéfalo/patologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/uso terapêutico
3.
Genes (Basel) ; 13(12)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36553518

RESUMO

Few studies have addressed how selective pressures have shaped the genetic structure of the current Native American populations, and they have mostly limited their inferences to admixed Latin American populations. Here, we searched for local adaptation signals, based on integrated haplotype scores and population branch statistics, in 325 Mexican Indigenous individuals with at least 99% Native American ancestry from five previously defined geographical regions. Although each region exhibited its own local adaptation profile, only PPARG and AJAP1, both negative regulators of the Wnt/ß catenin signaling pathway, showed significant adaptation signals in all the tested regions. Several signals were found, mainly in the genes related to the metabolic processes and immune response. A pathway enrichment analysis revealed the overrepresentation of selected genes related to several biological phenotypes/conditions, such as the immune response and metabolic pathways, in agreement with previous studies, suggesting that immunological and metabolic pressures are major drivers of human adaptation. Genes related to the gut microbiome measurements were overrepresented in all the regions, highlighting the importance of studying how humans have coevolved with the microbial communities that colonize them. Our results provide a further explanation of the human evolutionary history in response to environmental pressures in this region.


Assuntos
Adaptação Fisiológica , Indígena Americano ou Nativo do Alasca , Humanos , México , Adaptação Fisiológica/genética , Hispânico ou Latino , Grupos Raciais
4.
Nutr Diabetes ; 12(1): 50, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535927

RESUMO

BACKGROUND: Obesity is accompanied by excess adipose fat storage, which may lead to adipose dysfunction, insulin resistance, and type 2 diabetes (T2D). Currently, the tendency to develop T2D in obesity cannot be explained by genetic variation alone-epigenetic mechanisms, such as DNA methylation, might be involved. Here, we aimed to identify changes in DNA methylation and gene expression in visceral adipose tissue (VAT) that might underlie T2D susceptibility in patients with obesity. METHODS: We investigated DNA methylation and gene expression in VAT biopsies from 19 women with obesity, without (OND = 9) or with T2D (OD = 10). Differences in genome-scale methylation (differentially methylated CpGs [DMCs], false discovery rate < 0.05; and differentially methylated regions [DMRs], p value < 0.05) and gene expression (DEGs, p value <0.05) between groups were assessed. We searched for overlap between altered methylation and expression and the impact of altered DNA methylation on gene expression, using bootstrap Pearson correlation. The relationship of altered DNA methylation to T2D-related traits was also tested. RESULTS: We identified 11 120 DMCs and 96 DMRs distributed across all chromosomes, with the greatest density of epigenomic alterations at the MHC locus. These alterations were found in newly and previously T2D-related genes. Several of these findings were supported by validation and extended multi-ethnic analyses. Of 252 DEGs in the OD group, 68 genes contained DMCs (n = 88), of which 24 demonstrated a significant relationship between gene expression and methylation (p values <0.05). Of these, 16, including ATP11A, LPL and EHD2 also showed a significant correlation with fasting glucose and HbA1c levels. CONCLUSIONS: Our results revealed novel candidate genes related to T2D pathogenesis in obesity. These genes show perturbations in DNA methylation and expression profiles in patients with obesity and diabetes. Methylation profiles were able to discriminate OND from OD individuals; DNA methylation is thus a potential biomarker.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 2 , Obesidade , Feminino , Humanos , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Perfilação da Expressão Gênica , Obesidade/genética
5.
PLoS One ; 17(11): e0277771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36445929

RESUMO

As a historical nomadic group in Central Asia, Kazaks have mainly inhabited the steppe zone from the Altay Mountains in the East to the Caspian Sea in the West. Fine scale characterization of the genetic profile and population structure of Kazaks would be invaluable for understanding their population history and modeling prehistoric human expansions across the Eurasian steppes. With this mind, we characterized the maternal lineages of 200 Kazaks from Jetisuu at mitochondrial genome level. Our results reveal that Jetisuu Kazaks have unique mtDNA haplotypes including those belonging to the basal branches of both West Eurasian (R0, H, HV) and East Eurasian (A, B, C, D) lineages. The great diversity observed in their maternal lineages may reflect pivotal geographic location of Kazaks in Eurasia and implies a complex history for this population. Comparative analyses of mitochondrial genomes of human populations in Central Eurasia reveal a common maternal genetic ancestry for Turko-Mongolian speakers and their expansion being responsible for the presence of East Eurasian maternal lineages in Central Eurasia. Our analyses further indicate maternal genetic affinity between the Sherpas from the Tibetan Plateau with the Turko-Mongolian speakers.


Assuntos
Genoma Mitocondrial , Humanos , Animais , Resolução de Problemas , Etnicidade , DNA Mitocondrial/genética , Gerbillinae , China
6.
BMC Med Genomics ; 15(1): 139, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725460

RESUMO

BACKGROUND: Dysferlinopathy encompasses a group of rare muscular dystrophies caused by recessive mutations in the DYSF gene. The phenotype ranges from asymptomatic elevated serum creatine kinase (hyperCKemia) to selective and progressive involvement of the proximal and/or distal muscles of the limbs. Bohan and Peter criteria are the most widely used for the diagnosis of polymyositis, but they have limitations and can misclassify muscular dystrophies with inflammation as polymyositis. Most dysferlinopathy patients have muscle biopsies with inflammation and thus are vulnerable to misdiagnosis with polymyositis and inappropriate treatment with steroids and immunosuppressors. CASE PRESENTATION: We describe a 14 years-old male patient who was referred for assessment of asymptomatic hyperCKemia (26,372 IU/L). An X-linked dystrophinopathy initially was ruled out by direct genetic testing. Juvenile polymyositis was considered based on muscle biopsy, creatine kinase levels, and electromyography changes. Corticosteroid treatment triggered proximal lower limb muscular weakness, and no full muscular strength recovery was observed after corticosteroid withdrawal. Based on these observations, a limb-girdle muscular dystrophy (LGMD) was suspected, and LGMDR2 was confirmed by whole exome sequencing. CONCLUSION: We report a dysferlinopathy patient who was misdiagnosed with juvenile polymyositis and explore in a literature review how common such misdiagnoses are. With diagnosis based only on routine clinicopathological examinations, distinguishing an inflammatory myopathy from dysferlinopathy is quite difficult. We suggest that before establishing a diagnosis of "definite" or "probable" juvenile polymyositis, according to Bohan and Peter or current ACR/EULAR criteria, a muscular dystrophy must first be ruled out.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Polimiosite , Creatina Quinase , Erros de Diagnóstico , Disferlina/genética , Humanos , Inflamação , Masculino , Distrofias Musculares/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Polimiosite/diagnóstico
7.
Front Genet ; 13: 807381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669185

RESUMO

Background: Plasma lipid levels are a major risk factor for cardiovascular diseases. Although international efforts have identified a group of loci associated with the risk of dyslipidemia, Latin American populations have been underrepresented in these studies. Objective: To know the genetic variation occurring in lipid-related loci in the Mexican population and its association with dyslipidemia. Methods: We searched for single-nucleotide variants in 177 lipid candidate genes using previously published exome sequencing data from 2838 Mexican individuals belonging to three different cohorts. With the extracted variants, we performed a case-control study. Logistic regression and quantitative trait analyses were implemented in PLINK software. We used an LD pruning using a 50-kb sliding window size, a 5-kb window step size and a r2 threshold of 0.1. Results: Among the 34251 biallelic variants identified in our sample population, 33% showed low frequency. For case-control study, we selected 2521 variants based on a minor allele frequency ≥1% in all datasets. We found 19 variants in 9 genes significantly associated with at least one lipid trait, with the most significant associations found in the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster on chromosome 11. Notably, all 11 variants associated with hypertriglyceridemia were within this cluster; whereas variants associated with hypercholesterolemia were located at chromosome 2 and 19, and for low high density lipoprotein cholesterol were in chromosomes 9, 11, and 19. No significant associated variants were found for low density lipoprotein. We found several novel variants associated with different lipemic traits: rs3825041 in BUD13 with hypertriglyceridemia, rs7252453 in CILP2 with decreased risk to hypercholesterolemia and rs11076176 in CETP with increased risk to low high density lipoprotein cholesterol. Conclusions: We identified novel variants in lipid-regulation candidate genes in the Mexican population, an underrepresented population in genomic studies, demonstrating the necessity of more genomic studies on multi-ethnic populations to gain a deeper understanding of the genetic structure of the lipemic traits.

8.
Am J Hum Genet ; 109(1): 81-96, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932938

RESUMO

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.


Assuntos
Exoma , Variação Genética , Estudo de Associação Genômica Ampla , Lipídeos/sangue , Fases de Leitura Aberta , Alelos , Glicemia/genética , Estudos de Casos e Controles , Biologia Computacional/métodos , Bases de Dados Genéticas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Humanos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Anotação de Sequência Molecular , Herança Multifatorial , Fenótipo , Polimorfismo de Nucleotídeo Único
9.
Front Med (Lausanne) ; 9: 1044856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714151

RESUMO

Objective: Here we aimed to investigate the association of the Xq28 risk haplotype (H1) with susceptibility to childhood-onset systemic lupus erythematosus (SLE), and to compare its frequency and genetic structure in the Mexican population with those in other continental populations. Methods: We genotyped 15 single-nucleotide variants (SNVs) that form the H1 haplotype, using TaqMan real-time PCR. The association analysis [case-control and transmission disequilibrium test (TDT)] included 376 cases and 400 adult controls, all of whom were mestizos (MEZ). To identify risk alleles in Mexican Indigenous individuals, SNVs were imputed from whole-exome sequencing data of 1,074 individuals. The allelic frequencies determined in MEZ and Indigenous individuals were compared with those of the continental populations from the 1,000 Genomes database phase 3. Linkage disequilibrium (LD) analysis of risk alleles was performed on all populations. Interleukin-1 receptor associated kinase 1 (IRAK1) and methyl CpG binding protein 2 (MECP2) mRNA levels were determined using real-time PCR. Results: Case-control analysis revealed genetic association with childhood-onset SLE for all 15 SNVs (OR = 1.49-1.75; p = 0.0095 to 1.81 × 10-4) and for the Xq28 risk haplotype (OR = 1.97, p = 4 × 10-6). Comparing with individuals of European ancestry (0.14-0.16), the frequencies of the risk alleles were significantly higher in the MEZ individuals (0.55-0.68) and even higher in Indigenous individuals (0.57-0.83). LD analysis indicated a differential haplotype structure within the Indigenous groups, which was inherited to the MEZ population as a result of genetic admixture. Individuals homozygous for the Xq28 risk haplotype exhibited decreased levels of both MECP2A and B transcripts. Conclusion: We found that the H1 risk haplotype differs in its conformation in the Mexican population. This difference could be attributed to positive selection within the Indigenous population, with its inheritance now having an autoimmune health impact in both the Mexican Indigenous and MEZ populations.

10.
Nat Commun ; 12(1): 5942, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642312

RESUMO

The genetic makeup of Indigenous populations inhabiting Mexico has been strongly influenced by geography and demographic history. Here, we perform a genome-wide analysis of 716 newly genotyped individuals from 60 of the 68 recognized ethnic groups in Mexico. We show that the genetic structure of these populations is strongly influenced by geography, and our demographic reconstructions suggest a decline in the population size of all tested populations in the last 15-30 generations. We find evidence that Aridoamerican and Mesoamerican populations diverged roughly 4-9.9 ka, around the time when sedentary farming started in Mesoamerica. Comparisons with ancient genomes indicate that the Upward Sun River 1 (USR1) individual is an outgroup to Mexican/South American Indigenous populations, whereas Anzick-1 was more closely related to Mesoamerican/South American populations than to those from Aridoamerica, showing an even more complex history of divergence than recognized so far.


Assuntos
Etnicidade/genética , Genoma Humano , Migração Humana/história , Indígenas Norte-Americanos/genética , Filogenia , Dinâmica Populacional/estatística & dados numéricos , Etnicidade/classificação , Variação Genética , Genômica/métodos , História Antiga , Humanos , Indígenas Norte-Americanos/classificação , México , Filogeografia
11.
Adipocyte ; 10(1): 493-504, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34699309

RESUMO

Adipogenesis regulation is crucial for mature adipocyte function. In obesity, a major driver of type 2 diabetes (T2D), this process is disrupted and remains poorly characterized. Here we identified altered DNA methylation profiles in diabetic obese patients, during three adipocytes differentiation stages. We isolated mesenchymal cells from visceral adipose tissue of obese patients with and without T2D to analyse DNA methylation profiles at 0, 3, and 18 days of ex vivo differentiation and documented their impact on gene expression. Methylation and gene expression were analysed with EPIC and Clarion S arrays, respectively. Patients with T2D had epigenetic alterations in all the analysed stages, and these were mainly observed in genes important in adipogenesis, insulin resistance, cell death programming, and immune effector processes. Importantly, at 3 days, we found six-fold more methylated CpG alterations than in the other stages. This is the first study to document epigenetic markers that persist through all three adipogenesis stages and their impact on gene expression, which could be a cellular metabolic memory involved in T2D. Our data provided evidence that, throughout the adipogenesis process, alterations occur in methylation that might impact mature adipocyte function, cause tissue malfunction, and potentially, lead to the development of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Mesenquimais , Adipogenia/genética , Tecido Adiposo/metabolismo , Diferenciação Celular , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Epigênese Genética , Humanos , Obesidade/genética , Obesidade/metabolismo
12.
Biomed Pharmacother ; 142: 112009, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34388523

RESUMO

Genetic factors that affect variability in metformin response have been poorly studied in the Latin American population, despite its being the initial drug therapy for type 2 diabetes, one of the most prevalent diseases in that region. Metformin pharmacokinetics is carried out by members of the membrane transporters superfamily (SLCs), being the multidrug and toxin extrusion protein 1 (MATE1), one of the most studied. Some genetic variants in MATE1 have been associated with reduced in vitro metformin transport. They include rs77474263 p.[L125F], a variant present at a frequency of 13.8% in Latin Americans, but rare worldwide (less than 1%). Using exome sequence data and TaqMan genotyping, we revealed that the Mexican population has the highest frequency of this variant: 16% in Mestizos and 27% in Amerindians, suggesting a possible Amerindian origin. To elucidate the metformin pharmacogenetics, a children cohort was genotyped, allowing us to describe, for the first time, a MATE1 rs77474263 TT homozygous individual. An additive effect of the L125F variant was observed on blood metformin accumulation, revealing the highest metformin and lactate serum levels in the TT homozygote, and intermediate metformin values in the heterozygotes. Moreover, a molecular dynamics analysis suggested that the genetic variant effect on metformin efflux could be due to a decreased protein permeability. We conclude that pharmacogenetics could be useful in enhancing metformin pharmacovigilance in populations having a high frequency of the risk genotype, especially considering that these populations also have a higher susceptibility to the diseases for which metformin is the first-choice drug.


Assuntos
Hipoglicemiantes/farmacocinética , Metformina/farmacocinética , Proteínas de Transporte de Cátions Orgânicos/genética , Farmacogenética , Adolescente , Adulto , Criança , Estudos de Coortes , Feminino , Variação Genética , Genótipo , Humanos , Indígenas Norte-Americanos/genética , Ácido Láctico/sangue , Masculino , México , Simulação de Dinâmica Molecular
13.
Orphanet J Rare Dis ; 16(1): 291, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193236

RESUMO

BACKGROUND: We investigated pathogenic DYRK1B variants causative of abdominal obesity-metabolic syndrome 3 (AOMS3) in a group of patients originally diagnosed with type 2 diabetes. All DYRK1B exons were analyzed in a sample of 509 unrelated adults with type 2 diabetes and 459 controls, all belonging to the DMS1 SIGMA-cohort (ExAC). We performed in silico analysis on missense variants using Variant Effect Predictor software. To evaluate co-segregation, predicted pathogenic variants were genotyped in other family members. We performed molecular dynamics analysis for the co-segregating variants. RESULTS: After filtering, Mendelian genotypes were confirmed in two probands bearing two novel variants, p.Arg252His and p.Lys68Gln. Both variants co-segregated with the AOMS3 phenotype in classic dominant autosomal inheritance with full penetrance. In silico analysis revealed impairment of the DYRK1B protein function by both variants. For the first time, we describe age-dependent variable expressivity of this entity, with central obesity and insulin resistance apparent in childhood; morbid obesity, severe hypertriglyceridemia, and labile type 2 diabetes appearing before 40 years of age; and hypertension emerging in the fifth decade of life. We also report the two youngest individuals suffering from AOMS3. CONCLUSIONS: Monogenic forms of metabolic diseases could be misdiagnosed and should be suspected in families with several affected members and early-onset metabolic phenotypes that are difficult to control. Early diagnostic strategies and medical interventions, even before symptoms or complications appear, could be useful.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Diabetes Mellitus Tipo 2/genética , Genótipo , Humanos , Mutação , Linhagem , Fenótipo
14.
Nat Commun ; 12(1): 3505, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108472

RESUMO

Hundreds of thousands of genetic variants have been reported to cause severe monogenic diseases, but the probability that a variant carrier develops the disease (termed penetrance) is unknown for virtually all of them. Additionally, the clinical utility of common polygenetic variation remains uncertain. Using exome sequencing from 77,184 adult individuals (38,618 multi-ancestral individuals from a type 2 diabetes case-control study and 38,566 participants from the UK Biobank, for whom genotype array data were also available), we apply clinical standard-of-care gene variant curation for eight monogenic metabolic conditions. Rare variants causing monogenic diabetes and dyslipidemias display effect sizes significantly larger than the top 1% of the corresponding polygenic scores. Nevertheless, penetrance estimates for monogenic variant carriers average 60% or lower for most conditions. We assess epidemiologic and genetic factors contributing to risk prediction in monogenic variant carriers, demonstrating that inclusion of polygenic variation significantly improves biomarker estimation for two monogenic dyslipidemias.


Assuntos
Diabetes Mellitus Tipo 2/genética , Dislipidemias/genética , Predisposição Genética para Doença/genética , Adulto , Variação Biológica da População , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/metabolismo , Exoma/genética , Genótipo , Humanos , Herança Multifatorial , Penetrância , Medição de Risco
15.
Nature ; 594(7862): 234-239, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33981035

RESUMO

Loss of gut microbial diversity1-6 in industrial populations is associated with chronic diseases7, underscoring the importance of studying our ancestral gut microbiome. However, relatively little is known about the composition of pre-industrial gut microbiomes. Here we performed a large-scale de novo assembly of microbial genomes from palaeofaeces. From eight authenticated human palaeofaeces samples (1,000-2,000 years old) with well-preserved DNA from southwestern USA and Mexico, we reconstructed 498 medium- and high-quality microbial genomes. Among the 181 genomes with the strongest evidence of being ancient and of human gut origin, 39% represent previously undescribed species-level genome bins. Tip dating suggests an approximate diversification timeline for the key human symbiont Methanobrevibacter smithii. In comparison to 789 present-day human gut microbiome samples from eight countries, the palaeofaeces samples are more similar to non-industrialized than industrialized human gut microbiomes. Functional profiling of the palaeofaeces samples reveals a markedly lower abundance of antibiotic-resistance and mucin-degrading genes, as well as enrichment of mobile genetic elements relative to industrial gut microbiomes. This study facilitates the discovery and characterization of previously undescribed gut microorganisms from ancient microbiomes and the investigation of the evolutionary history of the human gut microbiota through genome reconstruction from palaeofaeces.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Evolução Biológica , Fezes/microbiologia , Microbioma Gastrointestinal , Genoma Bacteriano/genética , Interações entre Hospedeiro e Microrganismos , Antibacterianos/administração & dosagem , Bactérias/classificação , Bactérias/genética , Doença Crônica , Países Desenvolvidos , Países em Desenvolvimento , Dieta Ocidental , História Antiga , Humanos , Desenvolvimento Industrial/tendências , Methanobrevibacter/classificação , Methanobrevibacter/genética , Methanobrevibacter/isolamento & purificação , México , Comportamento Sedentário , Sudoeste dos Estados Unidos , Especificidade da Espécie , Simbiose
16.
BMC Public Health ; 20(1): 339, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183766

RESUMO

BACKGROUND: An Amerindian genetic background could play an important role in susceptibility to metabolic diseases, which have alarmingly increased in recent decades. Mexico has one of the highest prevalences of metabolic disease worldwide. The purpose of this study was to determine the prevalence of metabolic syndrome and its components in a population with high Amerindian ancestry. METHODS: We performed a descriptive, quantitative, and analytical cross-sectional study of 2596 adult indigenous volunteers from 60 different ethnic groups. Metabolic syndrome and its components were evaluated using the American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement criteria. RESULTS: The overall prevalence of metabolic syndrome in the indigenous Mexican population was 50.3%. Although females had a higher prevalence than males (55.6% vs. 38.2%), the males presented with combinations of metabolic syndrome components that confer a higher risk of cardiovascular disease. The most frequent metabolic syndrome component in both genders was low HDL-cholesterol levels (75.8%). Central obesity was the second most frequent component in females (61%), though it had a low prevalence in males (16.5%). The overall prevalence of elevated blood pressure was 42.7% and was higher in males than females (48.8 vs. 40%). We found no gender differences in the overall prevalence of elevated triglycerides (56.7%) or fasting glucose (27.9%). CONCLUSIONS: We documented that individuals with Amerindian ancestry have a high prevalence of metabolic syndrome. Health policies are needed to control the development of metabolic disorders in a population with high genetic risk.


Assuntos
Indígenas Norte-Americanos/estatística & dados numéricos , Síndrome Metabólica/epidemiologia , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Síndrome Metabólica/etnologia , México/epidemiologia , Pessoa de Meia-Idade , Obesidade Abdominal/epidemiologia , Obesidade Abdominal/etnologia , Prevalência , Fatores de Risco
17.
PLoS One ; 14(12): e0225030, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31790415

RESUMO

The Mexican population is characterized by high and particular admixture, and the picture of variants associated with disease remains unclear. Here we investigated the distribution of single nucleotide polymorphisms (SNPs) in the Mexican population. We focused on two non-synonymous and three synonymous SNPs in the beta-2 adrenergic receptor gene (ADRB2), which plays key roles in energy balance regulation. These SNPs were genotyped in 2,011 Mexican Amerindians (MAs) belonging to 62 ethnic groups and in 1,980 geographically matched Mexican Mestizos (MEZs). The frequency distribution of all five ADRB2 variants significantly differed between MAs, MEZs, and other continental populations (CPs) from the 1000 Genomes database. Allele frequencies of the three synonymous SNPs rs1042717A, rs1042718A, and rs1042719C were significantly higher in Mexican individuals, particularly among MAs, compared to in the other analyzed populations (P<0.05). The non-synonymous ADRB2 Glu27 allele (rs1042714G), which is associated with several common conditions, showed the lowest frequency in MAs (0.03) compared to other populations worldwide. Among MEZs, this allele showed a frequency of 0.15, intermediate between that in MAs and in Iberians (0.43). Moreover, Glu27 was the only SNP exhibiting a geographic gradient within the MEZ population (from 0.22 to 0.11), reflecting admixed mestizo ancestry across the country. Population differentiation analysis demonstrated that Glu27 had the highest FST value in MAs compared with Europeans (CEU) (0.71), and the lowest between MAs and Japanese (JPT) (0.01), even lower than that observed between MAs and MEZs (0.08). This analysis demonstrated the genetic diversity among Amerindian ethnicities, with the most extreme FST value (0.34) found between the Nahuatls from Morelos and the Seris. This is the first study of ADRB2 genetic variants among MA ethnicities. Our findings add to our understanding of the genetic contribution to variability in disease susceptibility in admixed populations.


Assuntos
População Negra/genética , Etnicidade/genética , Genética Populacional/métodos , Indígenas Norte-Americanos/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores Adrenérgicos beta 2/genética , População Branca/genética , Adulto , África/etnologia , Alelos , Europa (Continente)/etnologia , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Haplótipos/genética , Humanos , Masculino , México/etnologia
18.
Sci Rep ; 9(1): 12165, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434951

RESUMO

Type I interferon (IFN-I) pathway plays a central role in the systemic lupus erythematosus (SLE) pathogenesis. Recent data suggest that SLE is associated with variants in IFN-I genes, such as tyrosine kinase 2 (TYK2), which is crucial in anti-viral immunity. Here, five TYK2 single nucleotide polymorphisms (SNPs) were genotyped in 368 childhood-onset SLE Mexican patients and 516 sex-matched healthy controls. Allele frequencies were also estimated in four indigenous groups. SLE protection was associated with TYK2 risk infection variants affecting residually its catalytic domain, rs12720356 (OR = 0.308; p = 0.041) and rs34536443 (OR = 0.370; p = 0.034), but not with rs2304256, rs12720270, and rs280500. This association was replicated in a 506 adult-onset SLE patients sample (OR = 0.250; p = 0.005, and OR = 0.277; p = 0.008, respectively). The minor alleles of both associated SNPs had a lower frequency in Mestizos than in Spaniards and were absent or rare in indigenous, suggesting that the presence of these alleles in the Mexican Mestizo population was derived from the Spaniards. For the first time, we report genetic variants with a protective effect in childhood- and adult-onset SLE Mexican population. Our results suggest that the frequency of IFN-I alleles associated with SLE, may have been shaped in populations exposed to infectious diseases for long periods, and this could be an explanation why Native American ancestry is associated with a higher SLE prevalence and an earlier onset.


Assuntos
Lúpus Eritematoso Sistêmico/patologia , TYK2 Quinase/genética , Adulto , Alelos , Estudos de Casos e Controles , Domínio Catalítico , Criança , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Humanos , Interferon Tipo I/genética , Desequilíbrio de Ligação , Lúpus Eritematoso Sistêmico/genética , Masculino , México , Razão de Chances , Polimorfismo de Nucleotídeo Único , Fatores de Risco , TYK2 Quinase/química , TYK2 Quinase/metabolismo
19.
BMC Med Genomics ; 12(1): 68, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118044

RESUMO

BACKGROUND: Mexico is among the countries showing the highest heterogeneity of CFTR variants. However, no de novo variants have previously been reported in Mexican patients with cystic fibrosis (CF). CASE PRESENTATION: Here, we report the first case of a novel/de novo variant in a Mexican patient with CF. Our patient was an 8-year-old male who had exhibited the clinical onset of CF at one month of age, with steatorrhea, malabsorption, poor weight gain, anemia, and recurrent respiratory tract infections. Complete sequencing of the CFTR gene by next generation sequencing (NGS) revealed two different variants in trans, including the previously reported CF-causing variant c.3266G > A (p.Trp1089*, W1089*), that was inherited from the mother, and the novel/de novo CFTR variant c.1762G > T (p.Glu588*). CONCLUSION: Our results demonstrate the efficiency of targeted NGS for making a rapid and precise diagnosis in patients with clinically suspected CF. This method can enable the provision of accurate genetic counselling, and improve our understanding of the molecular basis of genetic diseases.


Assuntos
Fibrose Cística/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Sequência de Bases , Criança , Feminino , Humanos , Masculino , México , Linhagem , Fenótipo
20.
Nature ; 570(7759): 71-76, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31118516

RESUMO

Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10-3) and candidate genes from knockout mice (P = 5.2 × 10-3). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000-185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts.


Assuntos
Diabetes Mellitus Tipo 2/genética , Sequenciamento do Exoma , Exoma/genética , Animais , Estudos de Casos e Controles , Técnicas de Apoio para a Decisão , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...