Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Wildl Dis ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38857897

RESUMO

Chewing lice infesting avian hosts can significantly affect host health and fitness. Here, we present quantitative data on host body condition and louse abundance observed from 121 Rough-legged Hawks (Buteo lagopus) sampled across the North American nonbreeding range. Among hawks examined, louse prevalence was 71%, with a mean abundance and intensity of 9.1 and 12.8 lice, respectively. We identified lice as Craspedorrhynchus sp., either Craspedorrhynchus dilatatus or Craspedorrhynchus taurocephalus, dependent on future taxonomic revision of the genus. Female and juvenile hawks had greater louse intensity and prevalence compared with male and adult hawks, respectively. Host body condition, measured as a breast muscle score (keel score), was negatively correlated with louse abundance after controlling for host age and sex. Possible explanations for these patterns include the following: sex-biased louse transfer between adults and nestlings, when female nestlings experience increased transfer loads; body size differences between males and females, when females are larger than males in each life stage; and preening limitations in females and juveniles, when both spend more time hunting and less time preening relative to adult males. Our results corroborate previous studies suggesting that the primary sources of intraspecific variation in louse abundance are host body size and preening limitations.

2.
Ecol Evol ; 14(5): e11321, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770122

RESUMO

Minimally invasive samples are often the best option for collecting genetic material from species of conservation concern, but they perform poorly in many genomic sequencing methods due to their tendency to yield low DNA quality and quantity. Genotyping-in-thousands by sequencing (GT-seq) is a powerful amplicon sequencing method that can genotype large numbers of variable-quality samples at a standardized set of single nucleotide polymorphism (SNP) loci. Here, we develop, optimize, and validate a GT-seq panel for the federally threatened northern Idaho ground squirrel (Urocitellus brunneus) to provide a standardized approach for future genetic monitoring and assessment of recovery goals using minimally invasive samples. The optimized panel consists of 224 neutral and 81 putatively adaptive SNPs. DNA collected from buccal swabs from 2016 to 2020 had 73% genotyping success, while samples collected from hair from 2002 to 2006 had little to no DNA remaining and did not genotype successfully. We evaluated our GT-seq panel by measuring genotype discordance rates compared to RADseq and whole-genome sequencing. GT-seq and other sequencing methods had similar population diversity and F ST estimates, but GT-seq consistently called more heterozygotes than expected, resulting in negative F IS values at the population level. Genetic ancestry assignment was consistent when estimated with different sequencing methods and numbers of loci. Our GT-seq panel is an effective and efficient genotyping tool that will aid in the monitoring and recovery of this threatened species, and our results provide insights for applying GT-seq for minimally invasive DNA sampling techniques in other rare animals.

3.
Ecol Evol Physiol ; 97(1): 53-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717368

RESUMO

AbstractMany animals follow annual cycles wherein physiology and behavior change seasonally. Hibernating mammals undergo one of the most drastic seasonal alterations of physiology and behavior, the timing of which can have significant fitness consequences. The environmental cues regulating these profound phenotypic changes will heavily influence whether hibernators acclimate and ultimately adapt to climate change. Hence, identifying the cues and proximate mechanisms responsible for hibernation termination timing is critical. Northern Idaho ground squirrels (Urocitellus brunneus)-a rare, endemic species threatened with extinction-exhibit substantial variation in hibernation termination phenology, but it is unclear what causes this variation. We attached geolocators to free-ranging squirrels to test the hypothesis that squirrels assess surface conditions in spring before deciding whether to terminate seasonal heterothermy or reenter torpor. Northern Idaho ground squirrels frequently reentered torpor following a brief initial emergence from hibernacula and were more likely to do so earlier in spring or when challenged by residual snowpack. Female squirrels reentered torpor when confronted with relatively shallow snowpack upon emergence, whereas male squirrels reentered torpor in response to deeper spring snowpack. This novel behavior was previously assumed to be physiologically constrained in male ground squirrels by testosterone production required for spermatogenesis and activated by the circannual clock. Assessing surface conditions to decide when to terminate hibernation may help buffer these threatened squirrels against climate change. Documenting the extent to which other hibernators can facultatively alter emergence timing by reentering torpor after emergence will help identify which species are most likely to persist under climate change.


Assuntos
Hibernação , Sciuridae , Estações do Ano , Neve , Animais , Sciuridae/fisiologia , Hibernação/fisiologia , Feminino , Masculino , Torpor/fisiologia
4.
Ecology ; 105(2): e4229, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071700

RESUMO

Ecologists have studied the role of interspecific competition in structuring ecological communities for decades. Differential weather effects on animal competitors may be a particularly important factor contributing to the outcome of competitive interactions, though few studies have tested this hypothesis in free-ranging animals. Specifically, weather might influence competitive dynamics by altering competitor densities and/or per-capita competitive effects on demographic vital rates. We used a 9-year data set of marked individuals to test for direct and interactive effects of weather and competitor density on survival probability in two coexisting mammalian congeners: Columbian ground squirrels (Urocitellus columbianus) and northern Idaho ground squirrels (Urocitellus brunneus). Ambient temperature and precipitation influenced survival probability in both species, but the effects of weather differed between the two species. Moreover, density of the larger Columbian ground squirrel negatively impacted survival probability in the smaller northern Idaho ground squirrel (but not vice versa), and the strength of the negative effect was exacerbated by precipitation. That is, cooler, wetter conditions benefited the larger competitor to the detriment of the smaller species. Our results suggest weather-driven environmental variation influences the competitive equilibrium between ecologically similar mammals of differential body size. Whether future climate change leads to the competitive exclusion of either species will likely depend on the mechanism(s) explaining the coexistence of these competing species. Divergent body size and, hence, differences in thermal tolerance and giving up densities offer potential explanations for the weather-dependent competitive asymmetry we documented, especially if the larger species competitively excludes the smaller species from habitat patches of shared preference via interference.


Assuntos
Ecossistema , Tempo (Meteorologia) , Humanos , Animais , Probabilidade , Mudança Climática , Sciuridae
5.
Ecol Evol ; 13(12): e10820, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38111920

RESUMO

Telemetry technology is ubiquitous for studying the behavior and demography of wildlife, including the use of traditional very high frequency (VHF) radio telemetry and more recent methods that record animal locations using global positioning systems (GPS). Satellite-based GPS telemetry allows researchers to collect high spatial-temporal resolution data remotely but may also come with additional costs. For example, recent studies from the southern Great Basin suggested GPS transmitters attached via backpacks may reduce the survival of greater sage-grouse (Centrocercus urophasianus) relative to VHF transmitters attached via collars that have been in use for decades. While some evidence suggests GPS backpacks reduce survival, no studies have examined the effects of GPS backpacks on breeding behavior and success. Therefore, we compared survival, breeding behavior, and nest success of sage-grouse hens marked with both VHF collars and GPS backpack transmitter over a 7-year period in central Idaho, USA. GPS backpacks reduced spring-summer survival of sage-grouse hens relative to hens with VHF collars, where daily mortality probability was 68%-82% higher from March 1 to August 1. Yet satellite GPS backpacks did not consistently affect nest success or the likelihood or timing of nest initiation relative to VHF collars. Daily nest survival varied annually and with timing of nest initiation and nest age, but marginal effects of transmitter type were statistically insignificant and interactions between transmitter type and study year produced no meaningful patterns. Our results corroborate recent studies for the effect of satellite GPS backpacks on sage-grouse survival, but also suggest that these transmitters do not appear to affect components of fecundity. Our results therefore add important context to recent debate surrounding the effects of GPS backpacks on sage-grouse, and the relative strengths and weaknesses of different transmitter types for understanding behavior and population dynamics.

6.
Ecol Evol ; 13(4): e9933, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37038512

RESUMO

Global change has altered the nature of disturbance regimes, and megafire events are increasingly common. Megafires result in immediate changes to habitat available to terrestrial wildlife over broad landscapes, yet we know surprisingly little about how such changes shape space use of sensitive species in habitat that remains. Functional responses provide a framework for understanding and predicting changes in space use following habitat alteration, but no previous studies have assessed functional responses as a consequence of megafire. We studied space use and tested for functional responses in habitat use by breeding greater sage-grouse (Centrocercus urophasianus) before and after landscape-level changes induced by a >40,000 ha, high-intensity megafire that burned sagebrush steppe in eastern Idaho, USA. We also incorporated functional responses into predictive resource selection functions (RSFs) to map breeding habitat before and after the fire. Megafire had strong effects on the distribution of available resources and resulted in context-dependent habitat use that was heterogeneous across different components of habitat. We observed functional responses in the use and selection of a variety of resources (shrubs and herbaceous vegetation) for both nesting and brood rearing. Functional responses in the use of nesting habitat were influenced by the overarching effect of megafire on vegetation, whereas responses during brood rearing appeared to be driven by individual variation in available resources that were conditional on nest locations. Importantly, RSFs built using data collected prior to the burn also had poor transferability for predicting space use in a post-megafire landscape. These results have strong implications for understanding and predicting how animals respond to a rapidly changing environment, given that increased severity, frequency, and extent of wildfire are consequences of global change with the capacity to reshape ecosystems. We therefore demonstrate a conceptual framework to better understand space use and aid habitat conservation for wildlife in a rapidly changing world.

7.
Oecologia ; 202(1): 83-96, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37067578

RESUMO

Avian reproductive strategies vary widely, and many studies of life-history variation have focused on the incubation and hatching stages of nesting. Birds make proximate decisions regarding reproductive investment during the laying stage, and these decisions likely constrain and tradeoff with other traits and subsequent behaviors. However, we know relatively little about egg-laying stage behaviors given the difficulty of locating and monitoring nest sites from the onset of laying. We used non-invasive continuous video recording to quantify variation in the egg-laying behaviors of burrowing owls (Athene cunicularia) along a 1400-km latitudinal gradient in western North America. Burrowing owls laid eggs disproportionately in the morning hours, and that tendency was strongest among first eggs in a clutch. However, selection appeared to act more strongly on laying intervals (the time between laying of consecutive eggs) than on the diel time of laying, and laying intervals varied widely among and within clutches. Laying intervals declined seasonally and with increasing clutch size but increased with increasing burrow temperature and as a function of laying stage nest attentiveness, which may be a strategy to preserve egg viability. Laying interval was positively correlated with the duration of hatching intervals, suggesting that laying interval duration is one mechanism (along with timing of incubation onset) that generates variation in hatching asynchrony. Our results lend support to two general hypotheses to explain laying schedules; selection favors laying eggs in the morning, but other selective pressures may override that pattern. These conclusions indicate that allocation decisions during laying are an important part of avian life-history strategies which are subject to energetic constraints and tradeoffs with other traits.


Assuntos
Aves , Oviposição , Animais , Tamanho da Ninhada , Reprodução , América do Norte
8.
Mol Ecol ; 30(19): 4673-4694, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34324748

RESUMO

Understanding the neutral (demographic) and adaptive processes leading to the differentiation of species and populations is a critical component of evolutionary and conservation biology. In this context, recently diverged taxa represent a unique opportunity to study the process of genetic differentiation. Northern and southern Idaho ground squirrels (Urocitellus brunneus-NIDGS, and U. endemicus-SIDGS, respectively) are a recently diverged pair of sister species that have undergone dramatic declines in the last 50 years and are currently found in metapopulations across restricted spatial areas with distinct environmental pressures. Here we genotyped single-nucleotide polymorphisms (SNPs) from buccal swabs with restriction site-associated DNA sequencing (RADseq). With these data we evaluated neutral genetic structure at both the inter- and intraspecific level, and identified putatively adaptive SNPs using population structure outlier detection and genotype-environment association (GEA) analyses. At the interspecific level, we detected a clear separation between NIDGS and SIDGS, and evidence for adaptive differentiation putatively linked to torpor patterns. At the intraspecific level, we found evidence of both neutral and adaptive differentiation. For NIDGS, elevation appears to be the main driver of adaptive differentiation, while neutral variation patterns match and expand information on the low connectivity between some populations identified in previous studies using microsatellite markers. For SIDGS, neutral substructure generally reflected natural geographical barriers, while adaptive variation reflected differences in land cover and temperature, as well as elevation. These results clearly highlight the roles of neutral and adaptive processes for understanding the complexity of the processes leading to species and population differentiation, which can have important conservation implications in susceptible and threatened species.


Assuntos
Genética Populacional , Genômica , Animais , Genótipo , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Sciuridae/genética
9.
Ecol Evol ; 11(11): 5985-5997, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141197

RESUMO

AIM: Anticipating and mitigating the impacts of climate change on species diversity in montane ecosystems requires a mechanistic understanding of drivers of current patterns of diversity. We documented the shape of elevational gradients in avian species richness in North America and tested a suite of a priori predictions for each of five mechanistic hypotheses to explain those patterns. LOCATION: United States. METHODS: We used predicted occupancy maps generated from species distribution models for each of 646 breeding birds to document elevational patterns in avian species richness across the six largest U.S. mountain ranges. We used spatially explicit biotic and abiotic data to test five mechanistic hypotheses proposed to explain geographic variation in species richness. RESULTS: Elevational gradients in avian species richness followed a consistent pattern of low elevation plateau-mid-elevation peak (as per McCain, 2009). We found support for three of the five hypotheses to explain the underlying cause of this pattern: the habitat heterogeneity, temperature, and primary productivity hypotheses. MAIN CONCLUSIONS: Species richness typically decreases with elevation, but the primary cause and precise shape of the relationship remain topics of debate. We used a novel approach to study the richness-elevation relationship and our results are unique in that they show a consistent relationship between species richness and elevation among 6 mountain ranges, and universal support for three hypotheses proposed to explain the underlying cause of the observed relationship. Taken together, these results suggest that elevational variation in food availability may be the ecological process that best explains elevational gradients in avian species richness in North America. Although much attention has focused on the role of abiotic factors, particularly temperature, in limiting species' ranges, our results offer compelling evidence that other processes also influence (and may better explain) elevational gradients in species richness.

10.
Ecology ; 102(6): e03338, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33710621

RESUMO

Variation in life-history strategies is central to our understanding of population dynamics and how organisms adapt to their environments. Yet we lack consensus regarding the ecological processes that drive variation in traits related to reproduction and survival. For example, we still do not understand the cause of two widespread inter- and intraspecific patterns: (1) the ubiquitous positive association between avian clutch size and latitude; and (2) variation in the extent of asynchronous hatching of eggs within a single clutch. Well-known hypotheses to explain each pattern have largely focused on biotic processes related to food availability and predation risk. However, local adaptation to maintain egg viability could explain both patterns with a single abiotic mechanism. The egg viability hypothesis was initially proposed to explain the cause of asynchronous hatching and suggests that asynchronous hatching results from early incubation onset in response to unfavorable nest microclimatic conditions, which otherwise reduce egg viability. However, allocation of resources to early incubation, prior to clutch completion, may energetically constrain clutch size and help explain the positive association between clutch size and latitude. We measured intraspecific variation in five functionally linked life-history traits of burrowing owls at five study sites spanning a 1,400-km latitudinal transect in western North America: clutch size, the timing of incubation onset, the degree of hatching asynchrony, the probability of hatching failure, and nestling survival. We found that most traits varied clinally with latitude, but all the traits were more strongly associated with individual nest microclimates than with latitude, and all varied with nest microclimate in the directions predicted by the egg viability hypothesis. Furthermore, incubation began earlier, hatching asynchrony increased, and clutch size declined across the breeding season. These results suggest that nest microclimate drives an important life-history trade-off and that thermal gradients are often sufficient to account for observed biogeographic and seasonal patterns in life-history strategies. Furthermore, our results reveal a potentially important indirect mechanism by which reproductive success and recruitment could be affected by climate change.


Assuntos
Microclima , Reprodução , Animais , Tamanho da Ninhada , América do Norte , Comportamento Predatório
11.
Biol Rev Camb Philos Soc ; 96(4): 1349-1366, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33754488

RESUMO

One enduring priority for ecologists has been to understand the cause(s) of variation in reproductive effort among species and localities. Avian clutch size generally increases with increasing latitude, both within and across species, but the mechanism(s) driving that pattern continue to generate hypotheses and debate. In 1961, a Ph.D. student at Oxford University, N. Philip Ashmole, proposed the influential hypothesis that clutch size varies in direct proportion to the seasonality of resources available to a population. Ashmole's hypothesis has been widely cited and discussed in the ecological literature. However, misinterpretation and confusion has been common regarding the mechanism that underlies Ashmole's hypothesis and the testable predictions it generates. We review the development of well-known hypotheses to explain clutch size variation with an emphasis on Ashmole's hypothesis. We then discuss and clarify sources of confusion about Ashmole's hypothesis in the literature, summarise existing evidence in support and refutation of the hypothesis, and suggest some under-utilised and novel approaches to test Ashmole's hypothesis and gain an improved understanding of the mechanisms responsible for variation in avian clutch size and fecundity, and life-history evolution in general.


Assuntos
Fertilidade , Reprodução , Animais , Aves , Tamanho da Ninhada , Humanos
12.
Ecol Evol ; 10(19): 10697-10708, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33072290

RESUMO

Population structure across a species distribution primarily reflects historical, ecological, and evolutionary processes. However, large-scale contemporaneous changes in land use have the potential to create changes in habitat quality and thereby cause changes in gene flow, population structure, and distributions. As such, land-use changes in one portion of a species range may explain declines in other portions of their range. For example, many burrowing owl populations have declined or become extirpated near the northern edge of the species' breeding distribution during the second half of the 20th century. In the same period, large extensions of thornscrub were converted to irrigated agriculture in northwestern Mexico. These irrigated areas may now support the highest densities of burrowing owls in North America. We tested the hypothesis that burrowing owls that colonized this recently created owl habitat in northwestern Mexico originated from declining migratory populations from the northern portion of the species' range (migration-driven breeding dispersal whereby long-distance migrants from Canada and the United States became year-round residents in the newly created irrigated agriculture areas in Mexico). We used 10 novel microsatellite markers to genotype 1,560 owls from 36 study locations in Canada, Mexico, and the United States. We found that burrowing owl populations are practically panmictic throughout the entire North American breeding range. However, an analysis of molecular variance provided some evidence that burrowing owl populations in northwestern Mexico and Canada together are more genetically differentiated from the rest of the populations in the breeding range, lending some support to our migration-driven breeding dispersal hypothesis. We found evidence of subtle genetic differentiation associated with irrigated agricultural areas in southern Sonora and Sinaloa in northwestern Mexico. Our results suggest that land use can produce location-specific population dynamics leading to subtle genetic structure even in the absence of dispersal barriers.

13.
PLoS One ; 15(9): e0239184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32997702

RESUMO

Setting land aside has long been a primary approach for protecting biodiversity; however, the efficacy of this approach has been questioned. We examined whether protecting lands positively influences bird species in the U.S., and thus overall biodiversity. We used the North American Breeding Bird Survey and Protected Areas Database of the U.S. to assess effects of protected and multiple-use lands on the prevalence and long-term population trends of imperiled and non-imperiled bird species. We evaluated whether both presence and proportional area of protected and multiple-use lands surrounding survey routes affected prevalence and population trends for imperiled and non-imperiled species. Regarding presence of these lands surrounding these survey routes, our results suggest that imperiled and non-imperiled species are using the combination of protected and multiple-use lands more than undesignated lands. We found no difference between protected and multiple-use lands. Mean population trends were negative for imperiled species in all land categories and did not differ between the land categories. Regarding proportion of protected lands surrounding the survey routes, we found that neither the prevalence nor population trends of imperiled or non-imperiled species was positively associated with any land category. We conclude that, although many species (in both groups) tend to be using these protected and multiple-use lands more frequently than undesignated lands, this protection does not appear to improve population trends. Our results may be influenced by external pressures (e.g., habitat fragmentation), the size of protected lands, the high mobility of birds that allows them to use a combination of all land categories, and management strategies that result in similar habitat between protected and multiple-use lands, or our approach to detect limited relationships. Overall, our results suggest that the combination of protected and multiple-use lands is insufficient, alone, to prevent declines in avian biodiversity at a national scale.


Assuntos
Biodiversidade , Aves , Conservação dos Recursos Naturais , Animais , Estados Unidos
14.
Ecol Evol ; 10(14): 7627-7643, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32760553

RESUMO

In herbivores, survival and reproduction are influenced by quality and quantity of forage, and hence, diet and foraging behavior are the foundation of an herbivore's life history strategy. Given the importance of diet to most herbivores, it is imperative that we know the species of plants they prefer, especially for herbivorous species that are at risk for extinction. However, it is often difficult to identify the diet of small herbivores because: (a) They are difficult to observe, (b) collecting stomach contents requires sacrificing animals, and (c) microhistology requires accurately identifying taxa from partially digested plant fragments and likely overemphasizes less-digestible taxa. The northern Idaho ground squirrel (Urocitellus brunneus) is federally threatened in the United States under the Endangered Species Act. We used DNA metabarcoding techniques to identify the diet of 188 squirrels at 11 study sites from fecal samples. We identified 42 families, 126 genera, and 120 species of plants in the squirrel's diet. Our use of three gene regions was beneficial because reliance on only one gene region (e.g., only trnL) would have caused us to miss >30% of the taxa in their diet. Northern Idaho ground squirrel diet differed between spring and summer, frequency of many plants in the diet differed from their frequency within their foraging areas (evidence of selective foraging), and several plant genera in their diet were associated with survival. Our results suggest that while these squirrels are generalists (they consume a wide variety of plant species), they are also selective and do not eat plants relative to availability. Consumption of particular genera such as Perideridia may be associated with higher overwinter survival.

15.
J Anim Ecol ; 89(2): 397-411, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31671204

RESUMO

Comparative studies, across and within taxa, have made important contributions to our understanding of the evolutionary processes that promote phenotypic diversity. Trait variation along geographic gradients provides a convenient heuristic for understanding what drives and maintains diversity. Intraspecific trait variation along latitudinal gradients is well-known, but elevational variation in the same traits is rarely documented. Trait variation along continuous elevational gradients, however, provides compelling evidence that individuals within a breeding population may experience different selective pressures. Our objectives were to quantify variation in a suite of traits along a continuous elevational gradient, evaluate whether individuals in the population experience different selective pressures along that gradient and quantify variation in migratory tendency along that gradient. We examined variation in a suite of 14 life-history, morphological and behavioural traits, including migratory tendency, of yellow-eyed juncos along a continuous 1000-m elevational gradient in the Santa Catalina Mountains of Arizona. Many traits we examined varied along the elevational gradient. Nest survival and nestling growth rates increased, while breeding season length, renesting propensity and adult survival declined, with increasing elevation. We documented the migratory phenotype of juncos (partial altitudinal migrants) and show that individual migratory tendency is higher among females than males and increases with breeding elevation. Our data support the paradigm that variation in breeding season length is a major selective pressure driving life-history variation along elevational gradients and that individuals breeding at high elevation pursue strategies that favour offspring quality over offspring quantity. Furthermore, a negative association between adult survival and breeding elevation and a positive association between nest survival and breeding elevation help explain both the downslope and reciprocal upslope seasonal migratory movements that characterize altitudinal migration in many birds. Our results demonstrate how detailed studies of intraspecific variation in suites of traits along environmental gradients can lend new insights into the evolutionary processes that promote diversification and speciation, the causes of migratory behaviour, and how animal populations will likely respond to climate change.


Assuntos
Características de História de Vida , Passeriformes , Altitude , Migração Animal , Animais , Arizona , Feminino , Masculino
16.
J Environ Manage ; 252: 109664, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31610450

RESUMO

Degradation of wetland ecosystems has negatively impacted many species, perhaps none more so than marsh birds that breed in vegetative emergent wetlands throughout North America. The U.S. Department of Defense manages approximately 29 million acres of land within the continental U.S., and many military installations contain wetland complexes that may be important for wetland birds. Thus, failure to adequately manage habitat for marsh birds could result in species extirpations and additional listings under the Endangered Species Act, and may result in regulatory burdens that reduce military readiness. We conducted spatial analyses to identify important breeding habitat on > 500 military installations for 12 species of marsh birds, with the goal of identifying installations that are, and are not, likely to harbor breeding habitat for each species. We also sought to assess the local value of military installations for species of greatest concern by comparing habitat suitability within installations to that in areas directly adjacent to those sites. We built range-wide, spatially-explicit models of species distribution to project suitability of breeding habitat for marsh birds within and adjacent to military installations. Our results demonstrate that installations with the best marsh bird habitat are geographically aggregated (both among and within species), primarily at sites along the eastern seaboard and within the southern U.S. In addition, only a few sites appear to contain high-quality habitat for most species. Five or fewer sites contained most of the high-quality habitat for 9 of 12 species, whereas most of the high-quality habitat for remaining species was found at ≤ 10 sites. This work fills an information gap regarding the distribution of breeding habitat for marsh birds on military lands across the U.S., and should facilitate both strategic conservation of habitat over broad scales and the integration of marsh birds into management efforts at the site level. Our analyses also identify installations that are not likely to harbor breeding habitat for priority species, and thus should help minimize conflicts between needs of the military and marsh-bird conservation.


Assuntos
Militares , Áreas Alagadas , Animais , Aves , Cruzamento , Conservação dos Recursos Naturais , Ecossistema , Humanos , América do Norte
17.
PLoS One ; 8(6): e65909, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776566

RESUMO

Seasonal declines in avian clutch size are well documented, but seasonal variation in other reproductive parameters has received less attention. For example, the probability of complete brood mortality typically explains much of the variation in reproductive success and often varies seasonally, but we know little about the underlying cause of that variation. This oversight is surprising given that nest predation influences many other life-history traits and varies throughout the breeding season in many songbirds. To determine the underlying causes of observed seasonal decreases in risk of nest predation, we modeled nest predation of Dusky Flycatchers (Empidonax oberholseri) in northern California as a function of foliage phenology, energetic demand, developmental stage, conspecific nest density, food availability for nest predators, and nest predator abundance. Seasonal variation in the risk of nest predation was not associated with seasonal changes in energetic demand, conspecific nest density, or predator abundance. Instead, seasonal variation in the risk of nest predation was associated with foliage density (early, but not late, in the breeding season) and seasonal changes in food available to nest predators. Supplemental food provided to nest predators resulted in a numerical response by nest predators, increasing the risk of nest predation at nests that were near supplemental feeders. Our results suggest that seasonal changes in foliage density and factors associated with changes in food availability for nest predators are important drivers of temporal patterns in risk of avian nest predation.


Assuntos
Ecossistema , Modelos Biológicos , Passeriformes/fisiologia , Comportamento Predatório/fisiologia , Estações do Ano , Comportamento Sexual Animal/fisiologia , Animais , California , Metabolismo Energético/fisiologia , Dinâmica Populacional
18.
Ecol Appl ; 20(7): 2024-35, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21049887

RESUMO

Large flood events were part of the historical disturbance regime within the lower basin of most large river systems around the world. Large flood events are now rare in the lower basins of most large river systems due to flood control structures. Endemic organisms that are adapted to this historical disturbance regime have become less abundant due to these dramatic changes in the hydrology and the resultant changes in vegetation structure. The Yuma Clapper Rail is a federally endangered bird that breeds in emergent marshes within the lower Colorado River basin in the southwestern United States and northwestern Mexico. We evaluated whether prescribed fire could be used as a surrogate disturbance event to help restore historical conditions for the benefit of Yuma Clapper Rails and four sympatric marsh-dependent birds. We conducted call-broadcast surveys for marsh birds within burned and unburned (control) plots both pre- and post-burn. Fire increased the numbers of Yuma Clapper Rails and Virginia Rails, and did not affect the numbers of Black Rails, Soras, and Least Bitterns. We found no evidence that detection probability of any of the five species differed between burn and control plots. Our results suggest that prescribed fire can be used to set back succession of emergent marshlands and help mimic the natural disturbance regime in the lower Colorado River basin. Hence, prescribed fire can be used to help increase Yuma Clapper Rail populations without adversely affecting sympatric species. Implementing a coordinated long-term fire management plan within marshes of the lower Colorado River may allow regulatory agencies to remove the Yuma Clapper Rail from the endangered species list.


Assuntos
Aves/fisiologia , Ecossistema , Espécies em Perigo de Extinção , Incêndios , Rios , Animais , Arizona , California , Plantas
19.
Oecologia ; 161(1): 199-207, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19437042

RESUMO

Migration is one of the most spectacular of animal behaviors and is prevalent across a broad array of taxa. In birds, we know much about the physiological basis of how birds migrate, but less about the relative contribution of genetic versus environmental factors in controlling migratory tendency. To evaluate the extent to which migratory decisions are genetically determined, we examined whether individual western burrowing owls (Athene cunicularia hypugaea) change their migratory tendency from one year to the next at two sites in southern Arizona. We also evaluated the heritability of migratory decisions by using logistic regression to examine the association between the migratory tendency of burrowing owl parents and their offspring. The probability of migrating decreased with age in both sexes and adult males were less migratory than females. Individual owls sometimes changed their migratory tendency from one year to the next, but changes were one-directional: adults that were residents during winter 2004-2005 remained residents the following winter, but 47% of adults that were migrants in winter 2004-2005 became residents the following winter. We found no evidence for an association between the migratory tendency of hatch-year owls and their male or female parents. Migratory tendency of hatch-year owls did not differ between years, study sites or sexes or vary by hatching date. Experimental provision of supplemental food did not affect these relationships. All of our results suggest that heritability of migratory tendency in burrowing owls is low, and that intraspecific variation in migratory tendency is likely due to: (1) environmental factors, or (2) a combination of environmental factors and non-additive genetic variation. The fact that an individual's migratory tendency can change across years implies that widespread anthropogenic changes (i.e., climate change or changes in land use) could potentially cause widespread changes in the migratory tendency of birds.


Assuntos
Migração Animal/fisiologia , Meio Ambiente , Estrigiformes/fisiologia , Fatores Etários , Animais , Arizona , Feminino , Modelos Logísticos , Masculino , Estrigiformes/genética
20.
Am Nat ; 169(3): 344-59, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17294370

RESUMO

The question of why birds migrate is still poorly understood despite decades of debate. Previous studies have suggested that use of edge habitats and a frugivorous diet are precursors to the evolution of migration in Neotropical birds. However, these studies did not explore other ecological correlates of migration and did not control for phylogeny at the species level. We tested the evolutionary precursor hypothesis by examining the extent to which habitat and diet are associated with migratory behavior, using a species-level comparative analysis of the Tyranni. We used both migratory distance and sedentary versus migratory behavior as response variables. We also examined the influences of foraging group size, membership in mixed-species flocks, elevational range, and body mass on migratory behavior. Raw species analyses corroborated some results from studies that put forth the evolutionary precursor hypothesis, but phylogenetically independent contrast analyses highlighted an important interaction between habitat and diet and their roles as precursors to migration. Foraging group size was consistently associated with migratory behavior in both raw species and independent contrast analyses. Our results lead to a resource variability hypothesis that refines the evolutionary precursor hypothesis and reconciles the results of several studies examining precursors to migration in birds.


Assuntos
Migração Animal , Evolução Biológica , Aves/fisiologia , Modelos Biológicos , Migração Animal/classificação , Animais , Aves/classificação , Aves/genética , Ecossistema , Filogenia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...