Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 13(2): 140-148, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33380742

RESUMO

Finding faster and simpler ways to screen protein sequence space to enable the identification of new biocatalysts for asymmetric synthesis remains both a challenge and a rate-limiting step in enzyme discovery. Biocatalytic strategies for the synthesis of chiral amines are increasingly attractive and include enzymatic asymmetric reductive amination, which offers an efficient route to many of these high-value compounds. Here we report the discovery of over 300 new imine reductases and the production of a large (384 enzymes) and sequence-diverse panel of imine reductases available for screening. We also report the development of a facile high-throughput screen to interrogate their activity. Through this approach we identified imine reductase biocatalysts capable of accepting structurally demanding ketones and amines, which include the preparative synthesis of N-substituted ß-amino ester derivatives via a dynamic kinetic resolution process, with excellent yields and stereochemical purities.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Oxirredutases/isolamento & purificação , Aminação/efeitos dos fármacos , Aminas/química , Biocatálise , Iminas/metabolismo , Cetonas/química , Oxirredutases/metabolismo , Estereoisomerismo
2.
Adv Protein Chem Struct Biol ; 122: 289-320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32951814

RESUMO

Cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases. P450s are found in all Kingdoms of life and exhibit incredible diversity, both at sequence level and also on a biochemical basis. In the majority of cases, P450s can be assigned into one of ten classes based on their associated redox partners, domain architecture and cellular localization. Prokaryotic P450s now represent a large diverse collection of annotated/known enzymes, of which many have great potential biocatalytic potential. The self-sufficient P450 classes (Class VII/VIII) have been explored significantly over the past decade, with many annotated and biochemically characterized members. It is clear that the prokaryotic P450 world is expanding rapidly, as the number of published genomes and metagenome studies increases, and more P450 families are identified and annotated (CYP families).


Assuntos
Archaea , Bactérias , Sistema Enzimático do Citocromo P-450 , Genoma Arqueal , Genoma Bacteriano , Archaea/enzimologia , Archaea/genética , Bactérias/enzimologia , Bactérias/genética , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...