Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
ASAIO J ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38728744

RESUMO

The Pulmonary Assist System (PAS) is currently under development as a wearable respiratory assist system. In this study, the hemocompatibility of the PAS's axial-flow mechanical pump (AFP) was compared to other contemporary mechanical pumps in an acute ovine model. The PAS was attached to a normal sheep in a venovenous configuration using one of three pumps: 1) AFP, 2) ReliantHeart HeartAssist 5 (control), or 3) Abbott Pedimag (control) (n = 5 each). Each sheep was supported on the PAS for 12 hours with two L/minute of blood flow and four L/minute of sweep gas. Hemolysis, coagulation, inflammation, and platelet activation and loss were compared among the groups. In this study, the plasma-free hemoglobin (pfHb) was less than 10 mg/dl in all groups. The pfHb was significantly lower in the AFP group compared to other groups. There was no significant clot formation in the pumps and oxygenators in all groups. Furthermore, no significant differences in coagulation (oxygenator resistance, fibrinopeptide A), inflammation (white blood cell counts, IL-8), and platelet activation and loss (p-selectin, platelet counts) were observed among the groups (all, p > 0.05). This study demonstrates equivalent hemocompatibility of the PAS's AFP to other contemporary mechanical pumps with a reduced level of hemolysis on startup.

2.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260509

RESUMO

The hollow fiber membrane bundle is the functional component of artificial lungs, transferring oxygen and carbon dioxide to and from the blood. It is also the primary location of blood clot formation and propagation in these devices. The geometric design of fiber bundles is defined by a narrow range of parameters that determine gas exchange efficiency and blood flow resistance, such as fiber packing density, path length, and frontal area. However, these parameters also affect thrombosis. This study investigated the effect of these parameters on clot formation using 3-D printed flow chambers that mimic the geometry and blood flow patterns of fiber bundles. Hollow fibers were represented by an array of vertical micro-rods (380 micron diameter) arranged with varying packing densities (40, 50, and 60%) and path lengths (2 and 4 cm). Blood was pumped through the device corresponding to three mean blood flow velocities (16, 20, and 25 cm/min). Results showed that (1) clot formation decreases dramatically with decreasing packing density and increasing blood flow velocity, (2) clot formation at the outlet of fiber bundle enhances deposition upstream, and consequently (3) greater path length provides more clot-free fiber surface area for gas exchange than a shorter path length. These results can be used to create less thrombogenic, more efficient artificial lung designs. Translational Impact Sentence: Fiber bundle parameters, such as decreased packing density, increased blood flow velocity, and a longer path length, can be used to design a less thrombogenic, more efficient artificial lung to extend functionality.

3.
ASAIO J ; 70(2): e23-e26, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578993

RESUMO

A new, lightweight (2.3 kg), ambulatory pulmonary assist system (PAS) underwent preliminary evaluation in ambulatory sheep. The PAS was purposefully designed for long-term extracorporeal respiratory support for chronic lung disease and utilizes a novel, small (0.9 m 2 surface area) gas exchanger, the pulmonary assist device, with a modified Heart Assist 5 pump fitting in a small wearable pack. Prototype PAS were attached to two sheep in venovenous configuration for 7 and 14 days, evaluating ability to remain thrombus free; maintain gas exchange and blood flow resistance; avoid biocompatibility-related complications while allowing safe ambulation. The PAS achieved 1.56 L/min of flow at 10.8 kRPM with a 24 Fr cannula in sheep one and 2.0 L/min at 10.5 kRPM with a 28 Fr cannula in sheep 2 without significant change. Both sheep walked freely, demonstrating the first application of truly ambulatory ECMO in sheep. While in vitro testing evaluated PAS oxygen transfer rates of 104.6 ml/min at 2 L/min blood flow, oxygen transfer rates averaged 60.6 ml/min and 70.6 ml/min in studies 1 and 2, due to average hemoglobin concentrations lower than humans (8.9 and 10.5 g/dl, respectively). The presented cases support uncomplicated ambulation using the PAS.


Assuntos
Pneumopatias , Pulmão , Humanos , Ovinos , Animais , Hemodinâmica/fisiologia , Oxigênio , Cânula
4.
J Heart Lung Transplant ; 43(2): 293-302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37907183

RESUMO

BACKGROUND: Right heart failure is the major cause of death in pulmonary hypertension. Lung transplantation is the only long-term treatment option for patients who fail medical therapy. Due to the scarcity of donor lungs, there is a critical need to develop durable mechanical support for the failing right heart. A major design goal for durable support is to reduce the size and complexity of devices to facilitate ambulation. Toward this end, we sought to deploy wearable mechanical support technology in a sheep disease model of chronic right heart failure. METHODS: In 6 sheep with chronic right heart failure, a mechanical support system consisting of an extracorporeal blood pump coupled with a gas exchange unit was attached in a right atrium-to-left atrium configuration for up to 7 days. Circuit performance, hematologic parameters, and animal hemodynamics were analyzed. RESULTS: Six subjects underwent the chronic disease model for 56 to 71 days. Three of the subjects survived to the 7-day end-point for circulatory support. The circuit provided 2.8 (0.5) liter/min of flow compared to the native pulmonary blood flow of 3.5 (1.1) liter/min. The animals maintained physiologically balanced blood gas profile with a sweep flow of 1.2 (1.0) liter/min. Two animals freely ambulated while wearing the circuit. CONCLUSIONS: Our novel mechanical support system provided physiologic support for a large animal model of pulmonary hypertension with right heart failure. The small footprint of the circuit and the low sweep requirement demonstrate the feasibility of this technology to enable mobile ambulatory applications.


Assuntos
Oxigenação por Membrana Extracorpórea , Insuficiência Cardíaca , Coração Auxiliar , Hipertensão Pulmonar , Humanos , Animais , Ovinos , Hipertensão Pulmonar/terapia , Insuficiência Cardíaca/cirurgia , Hemodinâmica/fisiologia , Átrios do Coração
5.
Physiol Rep ; 10(10): e15136, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35582996

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) increases right ventricular (RV) workload and decreases myocardial oxygen reserve, eventually leading to poor cardiac output. This study created and assessed a novel model of RV work output based on RV hemodynamics and oxygen supply, allowing new insight into causal mechanisms of RV dysfunction. METHODS: The RV function model was built upon an earlier, left ventricular model and further adjusted for more accurate clinical use. The model assumes that RV total power output (1) is the sum of isovolumic and stroke power and (2) is linearly related to its right coronary artery oxygen supply. Thus, when right coronary artery flow is limited or isovolumic power is elevated, less energy is available for producing cardiac output. The original and adjusted models were validated via data from patients with idiopathic PAH (n = 14) and large animals (n = 6) that underwent acute pulmonary banding with or without hypoxia. RESULTS: Both models demonstrated strong, significant correlations between RV oxygen consumption rate and RV total power output for PAH patients (original model, R2  = 0.66; adjusted model, R2  = 0.78) and sheep (original, R2  = 0.85; adjusted, R2  = 0.86). Furthermore, the models demonstrate a significant inverse relationship between required oxygen consumption and RV efficiency (stroke power/total power) (p < 0.001). Lastly, higher NYHA class was indicative of lower RV efficiency and higher oxygen consumption (p = 0.013). CONCLUSION: Right ventricular total power output can be accurately estimated directly from pulmonary hemodynamics and right coronary perfusion during PAH. This model highlights the increased vulnerability of PAH patients with compromised right coronary flow coupled with high afterload.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Acidente Vascular Cerebral , Disfunção Ventricular Direita , Animais , Hemodinâmica , Humanos , Oxigênio , Ovinos , Acidente Vascular Cerebral/complicações , Função Ventricular Direita
6.
ASAIO J ; 68(2): e29-e33, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33883506

RESUMO

Decompensated right ventricular failure (RVF) in patients with pulmonary hypertension (PH) is fatal, with limited treatment options. Novel mechanical circulatory support systems have therapeutic potential for RVF, but the development of these devices requires a large animal disease model that replicates the pathophysiology observed in humans. We previously reported an effective disease model of PH in sheep through ligation of the left pulmonary artery (PA) and progressive occlusion of the main PA. Herein, we report a case of acute decompensation with this model of chronic RVF. Gradual PA banding raised the RV pressure (maximum RV systolic/mean pressure = 95 mmHg/56 mmHg). Clinical findings and laboratory serum parameters suggested appropriate physiologic compensation for 7 weeks. However, mixed venous saturation declined precipitously on week 7, and creatinine increased markedly on week 9. By the 10th week, the animal developed dependent, subcutaneous edema. Subsequently, the animal expired during the induction of general anesthesia. Post-mortem evaluation revealed several liters of pleural effusion and ascites, RV dilatation, eccentric RV hypertrophy, and myocardial fibrosis. The presented case supports this model's relevance to the human pathophysiology of RVF secondary to PH and its value in the development of novel devices, therapeutics, and interventions.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Disfunção Ventricular Direita , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/etiologia , Humanos , Hipertensão Pulmonar/etiologia , Hipertrofia Ventricular Direita/etiologia , Artéria Pulmonar , Ovinos , Disfunção Ventricular Direita/etiologia
7.
J Transl Med ; 19(1): 179, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910585

RESUMO

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) research using large animals requires a significant amount of resources, slowing down the development of new means of ECMO anticoagulation. Therefore, this study developed and evaluated a new rat ECMO model using a 3D-printed mock-oxygenator. METHODS: The circuit consisted of tubing, a 3D-printed mock-oxygenator, and a roller pump. The mock-oxygenator was designed to simulate the geometry and blood flow patterns of the fiber bundle in full-scale oxygenators but with a low (2.5 mL) priming volume. Rats were placed on arteriovenous ECMO at a 1.9 mL/min flow rate at two different heparin doses (n = 3 each): low (15 IU/kg/h for eight hours) versus high (50 IU/kg/h for one hour followed by 25 IU/kg/h for seven hours). The experiment continued for eight hours or until the mock-oxygenator failed. The mock-oxygenator was considered to have failed when its blood flow resistance reached three times its baseline resistance. RESULTS: During ECMO, rats maintained near-normal mean arterial pressure and arterial blood gases with minimal hemodilution. The mock-oxygenator thrombus weight was significantly different (p < 0.05) between the low (0.02 ± 0.006 g) and high (0.003 ± 0.001 g) heparin delivery groups, and blood flow resistance was also larger in the low anticoagulation group. CONCLUSIONS: This model is a simple, inexpensive system for investigating new anticoagulation agents for ECMO and provides low and high levels of anticoagulation that can serve as control groups for future studies.


Assuntos
Oxigenação por Membrana Extracorpórea , Trombose , Animais , Heparina/farmacologia , Oxigenadores , Impressão Tridimensional , Ratos
8.
Biomaterials ; 272: 120778, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33812214

RESUMO

Blood contact with high surface area medical devices, such as dialysis and extracorporeal life support (ECLS), induces rapid surface coagulation. Systemic anticoagulation, such as heparin, is thus necessary to slow clot formation, but some patients suffer from bleeding complications. Both problems might be reduced by 1) replacing heparin anticoagulation with artificial surface inhibition of the protein adsorption that initiates coagulation and 2) selective inhibition of the intrinsic branch of the coagulation cascade. This approach was evaluated by comparing clot formation and bleeding times during short-term ECLS using zwitterionic polycarboxybetaine (PCB) surface coatings combined with either a potent, selective, bicyclic peptide inhibitor of activated Factor XII (FXII900) or standard heparin anticoagulation. Rabbits underwent venovenous ECLS with small sham oxygenators for 60 min using three means of anticoagulation (n = 4 ea): (1) PCB coating + FXII900 infusion, (2) PCB coating + heparin infusion with an activated clotting time of 220-300s, and (3) heparin infusion alone. Sham oxygenator blood clot weights in the PCB + FXII900 and PCB + heparin groups were 4% and 25% of that in the heparin group (p < 10-6 and p < 10-5), respectively. At the same time, the bleeding time remained normal in the PCB + FXII900 group (2.4 ± 0.2 min) but increased to 4.8 ± 0.5 and 5.1 ± 0.7 min in the PCB + heparin and heparin alone groups (p < 10-4 and 0.01). Sham oxygenator blood flow resistance was significantly lower in the PCB + FXII900 and PCB + heparin groups than in the heparin only group (p < 10-6 and 10-5). These results were confirmed by gross and scanning electron microscopy (SEM) images and fibrinopeptide A (FPA) concentrations. Thus, the combined use of PCB coating and FXII900 markedly reduced sham oxygenator coagulation and tissue bleeding times versus the clinical standard of heparin anticoagulation and is a promising anticoagulation method for clinical ECLS.


Assuntos
Anticoagulantes/farmacologia , Oxigenação por Membrana Extracorpórea , Fator XII/antagonistas & inibidores , Animais , Betaína , Coagulação Sanguínea , Heparina/farmacologia , Humanos , Ácidos Polimetacrílicos , Coelhos , Diálise Renal
9.
Adv Healthc Mater ; 10(10): e2100048, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33738976

RESUMO

A patient's capacity for tissue regeneration varies based on age, nutritional status, disease state, lifestyle, and gender. Because regeneration cannot be predicted prior to biomaterial implantation, there is a need for responsive biomaterials with adaptive, personalized degradation profiles to improve regenerative outcomes. This study reports a new approach to use therapeutic ultrasound as a means of altering the degradation profile of silk fibroin biomaterials noninvasively postimplantation. By evaluating changes in weight, porosity, surface morphology, compressive modulus, and chemical structure, it is concluded that therapeutic ultrasound can trigger enhanced degradation of silk fibroin scaffolds noninvasively. By removing microbubbles on the scaffold surface, it is found that acoustic cavitation is the mechanism responsible for changing the degradation profile. This method is proved to be safe for human cells with no negative effects on cell viability or metabolism. Sonication through human skin also effectively triggers scaffold degradation, increasing the clinical relevance of these results. These findings suggest that silk is an ultrasound-responsive biomaterial, where the degradation profile can be adjusted noninvasively to improve regenerative outcomes.


Assuntos
Fibroínas , Materiais Biocompatíveis , Humanos , Porosidade , Seda , Engenharia Tecidual , Alicerces Teciduais
10.
ASAIO J ; 67(1): e44-e48, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346995

RESUMO

Pulmonary hypertension (PH) is a progressive disease that leads to cardiopulmonary dysfunction and right heart failure from pressure and volume overloading of the right ventricle (RV). Mechanical cardiopulmonary support has theoretical promise as a bridge to organ transplant or destination therapy for these patients. Solving the challenges of mechanical cardiopulmonary support for PH and RV failure requires its testing in a physiologically relevant animal model. Previous PH models in large animals have used pulmonary bead embolization, which elicits unpredictable inflammatory responses and has a high mortality rate. We describe a step-by-step guide for inducing pulmonary hypertension and right ventricular hypertrophy (PH-RVH) in sheep by left pulmonary artery (LPA) ligation combined with progressive main pulmonary artery (MPA) banding. This approach provides a controlled method to regulate RV afterload as tolerated by the animal to achieve PH-RVH, while reducing acute mortality. This animal model can facilitate evaluation of mechanical support devices for PH and RV failure.


Assuntos
Modelos Animais de Doenças , Hipertensão Pulmonar , Hipertrofia Ventricular Direita , Disfunção Ventricular Direita , Animais , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/fisiopatologia , Ligadura , Masculino , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/cirurgia , Ovinos , Disfunção Ventricular Direita/fisiopatologia
11.
Nat Commun ; 11(1): 3890, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753636

RESUMO

Inhibiting thrombosis without generating bleeding risks is a major challenge in medicine. A promising solution may be the inhibition of coagulation factor XII (FXII), because its knock-out or inhibition in animals reduced thrombosis without causing abnormal bleeding. Herein, we have engineered a macrocyclic peptide inhibitor of activated FXII (FXIIa) with sub-nanomolar activity (Ki = 370 ± 40 pM) and a high stability (t1/2 > 5 days in plasma), allowing for the preclinical evaluation of a first synthetic FXIIa inhibitor. This 1899 Da molecule, termed FXII900, efficiently blocks FXIIa in mice, rabbits, and pigs. We found that it reduces ferric-chloride-induced experimental thrombosis in mice and suppresses blood coagulation in an extracorporeal membrane oxygenation (ECMO) setting in rabbits, all without increasing the bleeding risk. This shows that FXIIa activity is controllable in vivo with a synthetic inhibitor, and that the inhibitor FXII900 is a promising candidate for safe thromboprotection in acute medical conditions.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Fator XIIa/antagonistas & inibidores , Peptídeos Cíclicos/efeitos dos fármacos , Trombose/prevenção & controle , Animais , Cloretos/efeitos adversos , Clonagem Molecular , Modelos Animais de Doenças , Descoberta de Drogas , Oxigenação por Membrana Extracorpórea/métodos , Fator XII/antagonistas & inibidores , Feminino , Compostos Férricos/efeitos adversos , Humanos , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coelhos , Proteínas Recombinantes/farmacologia , Suínos
12.
ASAIO J ; 66(9): 1054-1062, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149748

RESUMO

Microchannel artificial lungs may provide highly efficient, long-term respiratory support, but a robust predictive oxygen transfer (VO2) model is needed to better design them. To meet this need, we first investigated the predictive accuracy of Mikic, Benn, and Drinker's advancing front (AF) oxygen transfer theory by applying it to previous microchannel lung studies. Here, the model that included membrane resistance showed no bias toward overprediction or underprediction of VO2 (median error: -1.13%, interquartile range: [-26.9%, 19.2%]) and matched closely with existing theory. Next, this theory was expanded into a general model for investigating a family of designs. The overall model suggests that, for VO2 = 100 ml/min, fraction of delivered oxygen (FDO2) = 40%, wall shear stress ((Equation is included in full-text article.)) = 30 dyn/cm, and blood channel height = 20-50 µm, a compact design can be achieved with priming volume ((Equation is included in full-text article.)) = 5.8-32 ml; however, manifolding may be challenging to satisfy the rigorous total width ((Equation is included in full-text article.)) requirement ((Equation is included in full-text article.)= 76-475 m). In comparison, 100-200 µm heights would yield larger dimensions ((Equation is included in full-text article.)122-478 ml) but simpler manifolding ((Equation is included in full-text article.)4.75-19.0 m). The device size can be further adjusted by varying FDO2, (Equation is included in full-text article.), or VO2. This model may thus serve as a simple yet useful tool to better design microchannel artificial lungs.


Assuntos
Órgãos Artificiais , Desenho de Equipamento , Pulmão , Modelos Biológicos
13.
Transl Res ; 211: 1-18, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31103468

RESUMO

Chronic lung disease is the 4th leading cause of death in the United States. Due to a shortage of donor lungs, alternative approaches to support failing, native lungs have been attempted, including mechanical ventilation and various forms of artificial lungs. However, each of these support methods causes significant complications when used for longer than a few days and are thus not capable of long-term support. For artificial lungs, complications arise due to interactions between the artificial materials of the device and the blood of the recipient. A potential new approach is the fabrication of lungs from biological materials, such that the gas exchange membranes provide a more biomimetic blood-contacting interface. Recent advancements with three-dimensional, soft-tissue biofabrication methods and the engineering of thin, basement membranes demonstrate the potential of fabricating a lung scaffold from extracellular matrix materials. This scaffold could then be seeded with endothelial and epithelial cells, matured within a bioreactor, and transplanted. In theory, this fully biological lung could provide improved, long-term biocompatibility relative to artificial lungs, but significant work is needed to perfect the organ design and construction methods. Like artificial lungs, biofabricated lungs do not need to follow the shape and structure of a native lung, allowing for simpler manufacture. However, various functional requirements must still be met, including stable, efficient gas exchange for a period of years. Design decisions depend on the disease state, how the organ is implanted, and the latest biofabrication methods available in a rapidly evolving field.


Assuntos
Órgãos Artificiais , Pulmão , Engenharia Tecidual , Humanos , Alicerces Teciduais
14.
Acta Biomater ; 92: 71-81, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31082571

RESUMO

Current artificial lungs fail in 1-4 weeks due to surface-induced thrombosis. Biomaterial coatings may be applied to anticoagulate artificial surfaces, but none have shown marked long-term effectiveness. Poly-carboxybetaine (pCB) coatings have shown promising results in reducing protein and platelet-fouling in vitro. However, in vivo hemocompatibility remains to be investigated. Thus, three different pCB-grafting approaches to artificial lung surfaces were first investigated: 1) graft-to approach using 3,4-dihydroxyphenylalanine (DOPA) conjugated with pCB (DOPA-pCB); 2) graft-from approach using the Activators ReGenerated by Electron Transfer method of atom transfer radical polymerization (ARGET-ATRP); and 3) graft-to approach using pCB randomly copolymerized with hydrophobic moieties. One device coated with each of these methods and one uncoated device were attached in parallel within a veno-venous sheep extracorporeal circuit with no continuous anticoagulation (N = 5 circuits). The DOPA-pCB approach showed the least increase in blood flow resistance and the lowest incidence of device failure over 36-hours. Next, we further investigated the impact of tip-to-tip DOPA-pCB coating in a 4-hour rabbit study with veno-venous micro-artificial lung circuit at a higher activated clotting time of 220-300 s (N ≥ 5). Here, DOPA-pCB reduced fibrin formation (p = 0.06) and gross thrombus formation by 59% (p < 0.05). Therefore, DOPA-pCB is a promising material for improving the anticoagulation of artificial lungs. STATEMENT OF SIGNIFICANCE: Chronic lung diseases lead to 168,000 deaths each year in America, but only 2300 lung transplantations happen each year. Hollow fiber membrane oxygenators are clinically used as artificial lungs to provide respiratory support for patients, but their long-term viability is hindered by surface-induced clot formation that leads to premature device failure. Among different coatings investigated for blood-contacting applications, poly-carboxybetaine (pCB) coatings have shown remarkable reduction in protein adsorption in vitro. However, their efficacy in vivo remains unclear. This is the first work that investigates various pCB-coating methods on artificial lung surfaces and their biocompatibility in sheep and rabbit studies. This work highlights the promise of applying pCB coatings on artificial lungs to extend its durability and enable long-term respiratory support for lung disease patients.


Assuntos
Betaína/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Pulmão/patologia , Trombose/patologia , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Fibrina/metabolismo , Pulmão/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Coelhos , Ovinos , Propriedades de Superfície
15.
Acta Biomater ; 90: 122-131, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953800

RESUMO

The large, densely packed artificial surface area of artificial lungs results in rapid clotting and device failure. Surface generated nitric oxide (NO) can be used to reduce platelet activation and coagulation on gas exchange fibers, while not inducing patient bleeding due to its short half-life in blood. To generate NO, artificial lungs can be manufactured with PDMS hollow fibers embedded with copper nanoparticles (Cu NP) and supplied with an infusion of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP). The SNAP reacts with Cu NP to generate NO. This study investigates clot formation and gas exchange performance of artificial lungs with either NO-generating Cu-PDMS or standard polymethylpentene (PMP) fibers. One miniature artificial lung (MAL) made with 10 wt% Cu-PDMS hollow fibers and one PMP control MAL were attached to sheep in parallel in a veno-venous extracorporeal membrane oxygenation circuit (n = 8). Blood flow through each device was set at 300 mL/min, and each device received a SNAP infusion of 0.12 µmol/min. The ACT was between 110 and 180 s in all cases. Blood flow resistance was calculated as a measure of clot formation on the fiber bundle. Gas exchange experiments comparing the two groups were conducted every 24 h at blood flow rates of 300 and 600 mL/min. Devices were removed once the resistance reached 3x baseline (failure) or following 72 h. All devices were imaged using scanning electron microscopy (SEM) at the inlet, outlet, and middle of the fiber bundle. The Cu-PDMS NO generating MALs had a significantly smaller increase in resistance compared to the control devices. Resistance rose from 26 ±â€¯8 and 23 ±â€¯5 in the control and Cu-PDMS devices, respectively, to 35 ±â€¯8 mmHg/(mL/min) and 72 ±â€¯23 mmHg/(mL/min) at the end of each experiment. The resistance and SEM imaging of fiber surfaces demonstrate lower clot formation on Cu-PDMS fibers. Although not statistically significant, oxygen transfer for the Cu-PDMS MALs was 13.3% less than the control at 600 mL/min blood flow rate. Future in vivo studies with larger Cu-PDMS devices are needed to define gas exchange capabilities and anticoagulant activity over a long-term study at clinically relevant ACTs. STATEMENT OF SIGNIFICANCE: In artificial lungs, the large, densely-packed blood contacting surface area of the hollow fiber bundle is critical for gas exchange but also creates rapid, surface-generated clot requiring significant anticoagulation. Monitoring of anticoagulation, thrombosis, and resultant complications has kept permanent respiratory support from becoming a clinical reality. In this study, we use a hollow fiber material that generates nitric oxide (NO) to prevent platelet activation at the blood contacting surface. This material is tested in vivo in a miniature artificial lung and compared against the clinical standard. Results indicated significantly reduced clot formation. Surface-focused anticoagulation like this should reduce complication rates and allow for permanent respiratory support by extending the functional lifespan of artificial lungs and can further be applied to other medical devices.


Assuntos
Órgãos Artificiais , Cobre/química , Pulmão , Nanopartículas Metálicas/química , Óxido Nítrico , S-Nitroso-N-Acetilpenicilamina , Animais , Dimetilpolisiloxanos , Óxido Nítrico/química , Óxido Nítrico/farmacocinética , Óxido Nítrico/farmacologia , Nylons , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacocinética , S-Nitroso-N-Acetilpenicilamina/farmacologia , Ovinos , Fatores de Tempo
16.
Colloids Surf B Biointerfaces ; 169: 411-417, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29807339

RESUMO

BACKGROUND: Alveolar drug delivery is needed to enhance alveolar repair during acute respiratory distress syndrome. However, delivery of inhaled drugs is poor in this setting. Drug delivery via liquid perfluorocarbon emulsions could address this problem through better alveolar penetration and improved spatial distribution. Therefore, this study investigated the efficacy of the delivery of lysophosphatidic acid (LPA) growth factor to cultured alveolar epithelial cells via a perfluorocarbon emulsion. METHODS: Murine alveolar epithelial cells were treated for 2 h with varying concentrations (0-10 µM) of LPA delivered via aqueous solution or PFC emulsion. Cell migration was evaluated 18 h post-treatment using a scratch assay. Barrier function was evaluated 1 h post-treatment using a permeability assay. Proliferation was evaluated 72 h post-treatment using a viability assay. RESULTS: Partially due to emulsion creaming and stability, the effects of LPA were either diminished or completely hindered when delivered via emulsion versus aqueous. Migration increased significantly following treatment with the 10 µM emulsion (p < 10-3), but required twice the concentration to achieve an increase similar to aqueous LPA. Both barrier function and proliferation increased following aqueous treatment, but neither were significantly affected by the emulsion. CONCLUSIONS: The availability and thus the biological effect of LPA is significantly blunted during emulsified delivery in vitro, and this attenuation depends on the specific cellular function examined. Thus, the cellular level effects of drug delivery to the lungs via PFC emulsion are likely to vary based on the drug and the effect it is intended to create.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos , Fluorocarbonos/química , Lisofosfolipídeos/farmacologia , Animais , Antibacterianos/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Emulsões/química , Emulsões/farmacologia , Inflamação/tratamento farmacológico , Lisofosfolipídeos/química , Camundongos , Tamanho da Partícula , Propriedades de Superfície
17.
ASAIO J ; 63(5): 644-649, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28719441

RESUMO

The compliant thoracic artificial lung (cTAL) has been studied in acute in vivo and in vitro experiments. The cTAL's long-term function and potential use as a bridge to lung transplantation are assessed presently. The cTAL without anticoagulant coatings was attached to sheep (n = 5) via the pulmonary artery and left atrium for 14 days. Systemic heparin anticoagulation was used. Compliant thoracic artificial lung resistance, cTAL gas exchange, hematologic parameters, and organ function were recorded. Two sheep were euthanized for nondevice-related issues. The cTAL's resistance averaged 1.04 ± 0.05 mmHg/(L/min) with no statistically significant increases. The cTAL transferred 180 ± 8 ml/min of oxygen with 3.18 ± 0.05 L/min of blood flow. Except for transient surgical effects, organ function markers were largely unchanged. Necropsies revealed pulmonary edema and atelectasis but no other derangements. Hemoglobin levels dropped with device attachment but remained steady at 9.0 ± 0.1 g/dl thereafter. In a 14 day experiment, the cTAL without anticoagulant coatings exhibited minimal clot formation. Sheep physiology was largely unchanged except for device attachment-related hemodilution. This suggests that patients treated with the cTAL should not require multiple blood transfusions. Once tested with anticoagulant coatings and plasma resistant gas exchange fiber, the cTAL could serve as a bridge to transplantation.


Assuntos
Órgãos Artificiais , Pulmão , Animais , Anticoagulantes/uso terapêutico , Oxigenação por Membrana Extracorpórea , Pulmão/fisiologia , Transplante de Pulmão , Oxigênio/sangue , Troca Gasosa Pulmonar , Ovinos
18.
ACS Appl Mater Interfaces ; 9(11): 9255-9259, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28252277

RESUMO

We achieved ultralow fouling on target surfaces by controlled polymerization of carboxybetaine under ambient conditions. The polymerization process for grafting polymer films onto the surfaces was carried out in air and did not require any deoxygenation step or specialized equipment. This method allows one to conveniently introduce a nonfouling polymer network onto large substrates.

19.
Colloid Polym Sci ; 295(12): 2413-2422, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30220774

RESUMO

The efficacy of inhaled antibiotics is often impaired by insufficient drug penetration into plugged and poorly ventilated airways. Liquid ventilation with perfluorocarbon (PFC) containing emulsified aqueous antibiotics, or antibacterial perfluorocarbon ventilation, could potentially improve treatment of respiratory infections when used as an adjunct therapy to inhaled antibiotics. The molecular structure and concentration of the fluorosurfactant used to stabilize such water-in-PFC emulsions will have significant effects on the efficacy and safety of the resulting treatment. In the present study, emulsions are formulated with tobramycin in the aqueous phase using two different fluorosurfactants (termed FSL-PEG+FSL and FSH-PEG) at varying concentrations (Cfs ). An aqueous gel is used to evaluate the availability of emulsified drug to diffuse into an aqueous interface (such as mucus or biofilm) for varying emulsion formulations. Lastly, the cytotoxicity of the fluorosurfactants is characterized using human alveolar basal epithelial cells. Results showed that tobramycin delivery is reduced at low Cfs due to inadequate drug emulsification and at large Cfs due to hindered drug availability. Thus, maximal delivery occurs at intermediate values of Cfs equal to 2 and 10 mg mL-1 for the FSH-PEG and FSL-PEG+FSL fluorosurfactants, respectively. The optimal emulsion formulation utilized FSH-PEG and demonstrated improved drug delivery relative to previously used formulations while exhibiting no cytotoxic effect. This work increases understanding of the physical means of pulmonary drug delivery via a water-in-PFC emulsion and represents a critical step in optimizing emulsion formulation for safe and effective treatment.

20.
J Aerosol Med Pulm Drug Deliv ; 29(3): 251-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26741303

RESUMO

BACKGROUND: The effectiveness of inhaled aerosolized antibiotics is limited by poor ventilation of infected airways. Pulmonary delivery of antibiotics emulsified within liquid perfluorocarbon [antibacterial perfluorocarbon ventilation (APV)] may solve this problem through better airway penetration and improved spatial uniformity. However, little work has been done to explore emulsion formulation and the corresponding effects on drug delivery during APV. This study investigated the effects of emulsion formulation on emulsion stability and the pharmacokinetics of antibiotic delivery via APV. METHODS: Gravity-driven phase separation was examined in vitro by measuring emulsion tobramycin concentrations at varying heights within a column of emulsion over 4 hours for varying values of fluorosurfactant concentration (Cfs = 5-48 mg/mL H2O). Serum and pulmonary tobramycin concentrations in rats were then evaluated following pulmonary tobramycin delivery via aerosol or APV utilizing sufficiently stable emulsions of varying aqueous volume percentage (Vaq = 1%-5%), aqueous tobramycin concentration (Ct = 20-100 mg/mL), and Cfs (15 and 48 mg/mL H2O). RESULTS: In vitro assessment showed sufficient spatial and temporal uniformity of tobramycin dispersion within emulsion for Cfs ≥15 mg/mL H2O, while lower Cfs values showed insufficient emulsification even immediately following preparation. APV with stable emulsion formulations resulted in 5-22 times greater pulmonary tobramycin concentrations at 4 hours post-delivery relative to aerosolized delivery. Concentrations increased with emulsion formulations utilizing increased Vaq (with decreased Ct) and, to a lesser extent, increased Cfs. CONCLUSIONS: The emulsion stability necessary for effective delivery is retained at Cfs values as low as 15 mg/mL H2O. Additionally, the pulmonary retention of antibiotic delivered via APV is significantly greater than that of aerosolized delivery and can be most effectively increased by increasing Vaq and decreasing Ct. APV has been further proven as an effective means of pulmonary drug delivery with the potential to significantly improve antibiotic therapy for lung disease patients.


Assuntos
Propelentes de Aerossol/química , Antibacterianos/administração & dosagem , Sistemas de Liberação de Medicamentos , Fluorocarbonos/química , Tobramicina/administração & dosagem , Administração por Inalação , Aerossóis , Animais , Antibacterianos/sangue , Antibacterianos/química , Antibacterianos/farmacocinética , Composição de Medicamentos , Estabilidade de Medicamentos , Emulsões , Masculino , Ratos Sprague-Dawley , Tobramicina/sangue , Tobramicina/química , Tobramicina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...