Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Discov Immunol ; 2(1): kyad009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545765

RESUMO

The lung is a dynamic mucosal surface constantly exposed to a variety of immunological challenges including harmless environmental antigens, pollutants, and potentially invasive microorganisms. Dysregulation of the immune system at this crucial site is associated with a range of chronic inflammatory conditions including asthma and Chronic Pulmonary Obstructive Disease (COPD). However, due to its relative inaccessibility, our fundamental understanding of the human lung immune compartment is limited. To address this, we performed flow cytometric immune phenotyping of human lung tissue and matched blood samples that were isolated from 115 donors undergoing lung tissue resection. We provide detailed characterization of the lung mononuclear phagocyte and T cell compartments, demonstrating clear phenotypic differences between lung tissue cells and those in peripheral circulation. Additionally, we show that CD103 expression demarcates pulmonary T cells that have undergone recent TCR and IL-7R signalling. Unexpectedly, we discovered that the immune landscape from asthmatic or COPD donors was broadly comparable to controls. Our data provide a much-needed expansion of our understanding of the pulmonary immune compartment in both health and disease.

3.
Microbiol Spectr ; 11(3): e0113523, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158741

RESUMO

Fc-C-type lectin receptor (Fc-CTLRs) probes are soluble chimeric proteins constituted of the extracellular domain of a CTLR fused with the constant fraction (Fc) of the human IgG. These probes are useful tools to study the interaction of CTLRs with their ligands, with applications similar to those of antibodies, often in combination with widely available fluorescent antibodies targeting the Fc fragment (anti-hFc). In particular, Fc-Dectin-1 has been extensively used to study the accessibility of ß-glucans at the surface of pathogenic fungi. However, there is no universal negative control for Fc-CTLRs, making the distinction of specific versus nonspecific binding difficult. We describe here 2 negative controls for Fc-CTLRs: a Fc-control constituting of only the Fc portion, and a Fc-Dectin-1 mutant predicted to be unable to bind ß-glucans. Using these new probes, we found that while Fc-CTLRs exhibit virtually no nonspecific binding to Candida albicans yeasts, Aspergillus fumigatus resting spores strongly bind Fc-CTLRs in a nonspecific manner. Nevertheless, using the controls we describe here, we were able to demonstrate that A. fumigatus spores expose a low amount of ß-glucan. Our data highlight the necessity of appropriate negative controls for experiments involving Fc-CTLRs probes. IMPORTANCE While Fc-CTLRs probes are useful tools to study the interaction of CTLRs with ligands, their use is limited by the lack of appropriate negative controls in assays involving fungi and potentially other pathogens. We have developed and characterized 2 negative controls for Fc-CTLRs assays: Fc-control and a Fc-Dectin-1 mutant. In this manuscript, we characterize the use of these negative controls with zymosan, a ß-glucan containing particle, and 2 human pathogenic fungi, Candida albicans yeasts and Aspergillus fumigatus conidia. We show that A. fumigatus conidia nonspecifically bind Fc-CTLRs probes, demonstrating the need for appropriate negative controls in such assays.


Assuntos
Lectinas Tipo C , beta-Glucanas , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligantes , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Fungos/metabolismo , Leveduras , Esporos Fúngicos/metabolismo , beta-Glucanas/metabolismo
4.
Virulence ; 14(1): 2172264, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36752587

RESUMO

Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.


Assuntos
Aspergilose , Aspergilose Pulmonar , Humanos , Aspergillus fumigatus , Virulência , Aspergilose/microbiologia , Fatores de Virulência
6.
Front Immunol ; 13: 906338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958580

RESUMO

Schistosomiasis is a disease of global significance, with severity and pathology directly related to how the host responds to infection. The immunological narrative of schistosomiasis has been constructed through decades of study, with researchers often focussing on isolated time points, cell types and tissue sites of interest. However, the field currently lacks a comprehensive and up-to-date understanding of the immune trajectory of schistosomiasis over infection and across multiple tissue sites. We have defined schistosome-elicited immune responses at several distinct stages of the parasite lifecycle, in three tissue sites affected by infection: the liver, spleen, and mesenteric lymph nodes. Additionally, by performing RNA-seq on the livers of schistosome infected mice, we have generated novel transcriptomic insight into the development of schistosome-associated liver pathology and fibrosis across the breadth of infection. Through depletion of CD11c+ cells during peak stages of schistosome-driven inflammation, we have revealed a critical role for CD11c+ cells in the co-ordination and regulation of Th2 inflammation during infection. Our data provide an updated and high-resolution account of how host immune responses evolve over the course of murine schistosomiasis, underscoring the significance of CD11c+ cells in dictating host immunopathology against this important helminth infection.


Assuntos
Esquistossomose mansoni , Esquistossomose , Animais , Antígeno CD11c , Imunidade , Inflamação , Camundongos , Schistosoma mansoni
7.
Clin Microbiol Rev ; 35(1): e0009421, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34788127

RESUMO

Individuals suffering from severe viral respiratory tract infections have recently emerged as "at risk" groups for developing invasive fungal infections. Influenza virus is one of the most common causes of acute lower respiratory tract infections worldwide. Fungal infections complicating influenza pneumonia are associated with increased disease severity and mortality, with invasive pulmonary aspergillosis being the most common manifestation. Strikingly, similar observations have been made during the current coronavirus disease 2019 (COVID-19) pandemic. The copathogenesis of respiratory viral and fungal coinfections is complex and involves a dynamic interplay between the host immune defenses and the virulence of the microbes involved that often results in failure to return to homeostasis. In this review, we discuss the main mechanisms underlying susceptibility to invasive fungal disease following respiratory viral infections. A comprehensive understanding of these interactions will aid the development of therapeutic modalities against newly identified targets to prevent and treat these emerging coinfections.


Assuntos
COVID-19 , Coinfecção , Infecções Respiratórias , Vírus , Humanos , SARS-CoV-2
8.
Immunohorizons ; 5(8): 721-732, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462311

RESUMO

Plasmacytoid dendritic cells (pDCs) are potent producers of type I IFN (IFN-I) during viral infection and respond to IFN-I in a positive feedback loop that promotes their function. IFN-I shapes dendritic cell responses during helminth infection, impacting their ability to support Th2 responses. However, the role of pDCs in type 2 inflammation is unclear. Previous studies have shown that pDCs are dispensable for hepatic or splenic Th2 responses during the early stages of murine infection with the trematode Schistosoma mansoni at the onset of parasite egg laying. However, during S. mansoni infection, an ongoing Th2 response against mature parasite eggs is required to protect the liver and intestine from acute damage and how pDCs participate in immune responses to eggs and adult worms in various tissues beyond acute infection remains unclear. We now show that pDCs are required for optimal Th2 cytokine production in response to S. mansoni eggs in the intestinal-draining mesenteric lymph nodes throughout infection and for egg-specific IFN-γ at later time points of infection. Further, pDC depletion at chronic stages of infection led to increased hepatic and splenic pathology as well as abrogated Th2 cell cytokine production and activation in the liver. In vitro, mesenteric lymph node pDCs supported Th2 cell responses from infection-experienced CD4+ T cells, a process dependent on pDC IFN-I responsiveness, yet independent of Ag. Together, these data highlight a previously unappreciated role for pDCs and IFN-I in maintaining and reinforcing type 2 immunity in the lymph nodes and inflamed tissue during helminth infection.


Assuntos
Citocinas/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/parasitologia , Citocinas/metabolismo , Células Dendríticas/parasitologia , Feminino , Citometria de Fluxo/métodos , Interações Hospedeiro-Parasita/imunologia , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/parasitologia , Células Th2/imunologia , Células Th2/metabolismo , Células Th2/parasitologia
9.
Front Immunol ; 12: 635513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953712

RESUMO

Schistosome infection is a major cause of global morbidity, particularly in sub-Saharan Africa. However, there is no effective vaccine for this major neglected tropical disease, and re-infection routinely occurs after chemotherapeutic treatment. Following invasion through the skin, larval schistosomula enter the circulatory system and migrate through the lung before maturing to adulthood in the mesenteric or urogenital vasculature. Eggs released from adult worms can become trapped in various tissues, with resultant inflammatory responses leading to hepato-splenic, intestinal, or urogenital disease - processes that have been extensively studied in recent years. In contrast, although lung pathology can occur in both the acute and chronic phases of schistosomiasis, the mechanisms underlying pulmonary disease are particularly poorly understood. In chronic infection, egg-mediated fibrosis and vascular destruction can lead to the formation of portosystemic shunts through which eggs can embolise to the lungs, where they can trigger granulomatous disease. Acute schistosomiasis, or Katayama syndrome, which is primarily evident in non-endemic individuals, occurs during pulmonary larval migration, maturation, and initial egg-production, often involving fever and a cough with an accompanying immune cell infiltrate into the lung. Importantly, lung migrating larvae are not just a cause of inflammation and pathology but are a key target for future vaccine design. However, vaccine efforts are hindered by a limited understanding of what constitutes a protective immune response to larvae. In this review, we explore the current understanding of pulmonary immune responses and inflammatory pathology in schistosomiasis, highlighting important unanswered questions and areas for future research.


Assuntos
Pneumopatias Parasitárias/parasitologia , Pulmão/parasitologia , Schistosoma/patogenicidade , Esquistossomose/parasitologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Parasita , Humanos , Evasão da Resposta Imune , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pneumopatias Parasitárias/imunologia , Pneumopatias Parasitárias/prevenção & controle , Camundongos , Vacinas Protozoárias/uso terapêutico , Schistosoma/efeitos dos fármacos , Schistosoma/imunologia , Esquistossomose/imunologia , Esquistossomose/prevenção & controle , Esquistossomicidas/uso terapêutico
10.
Immunol Cell Biol ; 99(1): 17-20, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107992

RESUMO

Fitzpatrick et al. describe how IgA secretion by B cells and plasma cells in the mengines is crucial for protection against microbial invasion into the brain and the CNS.


Assuntos
Linfócitos B , Plasmócitos , Encéfalo , Imunoglobulina A
11.
Front Immunol ; 11: 183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117307

RESUMO

Methyl-CpG-binding domain-2 (Mbd2) acts as an epigenetic regulator of gene expression, by linking DNA methylation to repressive chromatin structure. Although Mbd2 is widely expressed in gastrointestinal immune cells and is implicated in regulating intestinal cancer, anti-helminth responses and colonic inflammation, the Mbd2-expressing cell types that control these responses are incompletely defined. Indeed, epigenetic control of gene expression in cells that regulate intestinal immunity is generally poorly understood, even though such mechanisms may explain the inability of standard genetic approaches to pinpoint the causes of conditions like inflammatory bowel disease. In this study we demonstrate a vital role for Mbd2 in regulating murine colonic inflammation. Mbd2-/- mice displayed dramatically worse pathology than wild type controls during dextran sulfate sodium (DSS) induced colitis, with increased inflammatory (IL-1ß+) monocytes. Profiling of mRNA from innate immune and epithelial cell (EC) populations suggested that Mbd2 suppresses inflammation and pathology via control of innate-epithelial cell crosstalk and T cell recruitment. Consequently, restriction of Mbd2 deficiency to CD11c+ dendritic cells and macrophages, or to ECs, resulted in increased DSS colitis severity. Our identification of this dual role for Mbd2 in regulating the inflammatory capacity of both CD11c+ cells and ECs highlights how epigenetic control mechanisms may limit intestinal inflammatory responses.


Assuntos
Colite/etiologia , Colo/imunologia , Proteínas de Ligação a DNA/fisiologia , Células Dendríticas/imunologia , Mucosa Intestinal/imunologia , Animais , Antígenos CD11/análise , Colite/imunologia , Suscetibilidade a Doenças , Feminino , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
12.
Eur J Immunol ; 49(7): 996-1000, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31267552

RESUMO

Helminth infections are a global health burden in humans and livestock and are considered to be a major evolutionary driver of type 2 immunity (orchestrated by type 2 cytokines, e.g., IL-4 and IL-13). Upon infection, helminths cause substantial damage to mucosal tissues as they migrate within the host and elicit crucial protective immune mechanisms. Macrophages, essential innate cells, are known to adopt a specific activation status (termed M(IL-4)) in type 2 cytokine environments. Yet, the role of these macrophages in mediating protective immune/wound healing responses to helminths is unclear. Furthermore, macrophage subsets can be very heterogenous (linked to their differing cellular origins) and the relative role of these subsets in the context of M(IL-4) activation to helminth infection is unknown. An article by Rolot et al. in this issue of the European Journal of Immunology [Eur. J. Immunol. 2019. 49: 1067-1081] uses a variety of transgenic murine strains to revise our understanding of the complexity of how these subsets undergo M(IL-4) activation and participate in wound healing responses in helminth infection. Here we highlight that consideration of different macrophage subsets in mucosal tissues is essential when evaluating the functional role of M(IL-4) macrophages.


Assuntos
Helmintíase , Helmintos , Esquistossomose , Animais , Citocinas , Humanos , Macrófagos , Camundongos , Monócitos
13.
Nat Commun ; 10(1): 2344, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138806

RESUMO

Infection by soil transmitted parasitic helminths, such as Trichuris spp, are ubiquitous in humans and animals but the mechanisms determining persistence of chronic infections are poorly understood. Here we show that p43, the single most abundant protein in T. muris excretions/secretions, is non-immunogenic during infection and has an unusual sequence and structure containing subdomain homology to thrombospondin type 1 and interleukin (IL)-13 receptor (R) α2. Binding of p43 to IL-13, the key effector cytokine responsible for T. muris expulsion, inhibits IL-13 function both in vitro and in vivo. Tethering of p43 to matrix proteoglycans presents a bound source of p43 to facilitate interaction with IL-13, which may underpin chronic intestinal infection. Our results suggest that exploiting the biology of p43 may open up new approaches to modulating IL-13 function and control of Trichuris infections.


Assuntos
Proteínas de Helminto/metabolismo , Interleucina-13/metabolismo , Enteropatias Parasitárias/metabolismo , Proteoglicanas/metabolismo , Trichuris/metabolismo , Animais , Matriz Extracelular/metabolismo , Proteínas de Helminto/imunologia , Interleucina-13/imunologia , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Enteropatias Parasitárias/imunologia , Camundongos , Homologia de Sequência de Aminoácidos , Trombospondina 1/metabolismo , Tricuríase
14.
Nat Immunol ; 20(5): 571-580, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936493

RESUMO

Fine control of macrophage activation is needed to prevent inflammatory disease, particularly at barrier sites such as the lungs. However, the dominant mechanisms that regulate the activation of pulmonary macrophages during inflammation are poorly understood. We found that alveolar macrophages (AlvMs) were much less able to respond to the canonical type 2 cytokine IL-4, which underpins allergic disease and parasitic worm infections, than macrophages from lung tissue or the peritoneal cavity. We found that the hyporesponsiveness of AlvMs to IL-4 depended upon the lung environment but was independent of the host microbiota or the lung extracellular matrix components surfactant protein D (SP-D) and mucin 5b (Muc5b). AlvMs showed severely dysregulated metabolism relative to that of cavity macrophages. After removal from the lungs, AlvMs regained responsiveness to IL-4 in a glycolysis-dependent manner. Thus, impaired glycolysis in the pulmonary niche regulates AlvM responsiveness during type 2 inflammation.


Assuntos
Inflamação/imunologia , Pulmão/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Animais , Inflamação/genética , Inflamação/metabolismo , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Larva/imunologia , Larva/fisiologia , Pulmão/metabolismo , Pulmão/patologia , Ativação de Macrófagos/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/parasitologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mucina-5B/genética , Mucina-5B/imunologia , Mucina-5B/metabolismo , Nippostrongylus/imunologia , Nippostrongylus/fisiologia , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/imunologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Infecções por Strongylida/genética , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia
15.
Front Immunol ; 9: 2764, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30542349

RESUMO

Background: Macrophages are pivotal in coordinating a range of important processes in the intestines, including controlling intracellular infections and limiting damaging inflammation against the microbiota. However, it is not clear how gut macrophages, relative to recruited blood monocytes and other myeloid cells, contribute to the intestinal inflammatory milieu, nor how macrophages and their monocyte precursors mediate recruitment of other immune cells to the inflamed intestine. Methods: Myeloid cell populations isolated from colonic inflammatory bowel disease (IBD) or murine dextran sulphate sodium (DSS) induced colitis were assessed using flow cytometry and compared to healthy controls. In addition, mRNA expression profiles in human and murine colon samples, and in macrophages and monocytes from healthy and inflamed murine colons, were analysed by quantitative PCR (qPCR) and mRNA microarray. Results: We show that the monocyte:macrophage balance is disrupted in colon inflammation to favour recruitment of CD14+HLA-DRInt cells in humans, and Ly6CHi monocytes in mice. In addition, we identify that murine blood monocytes receive systemic signals enabling increased release of IL-1ß prior to egress from the blood into the colon. Further, once within the colon and relative to other myeloid cells, monocytes represent the dominant local source of both IL-1ß and TNF. Finally, our data reveal that, independent of inflammation, murine colon macrophages act as a major source of Ccl7 and Ccl8 chemokines that trigger further recruitment of their pro-inflammatory monocyte precursors. Conclusions: Our work suggests that strategies targeting macrophage-mediated monocyte recruitment may represent a promising approach for limiting the chronic inflammation that characterises IBD.


Assuntos
Colite/imunologia , Colo/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Animais , Quimiocina CCL7/imunologia , Quimiocina CCL8/imunologia , Sulfato de Dextrana/imunologia , Feminino , Humanos , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-1beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Necrose Tumoral/imunologia
16.
J Pathol ; 245(3): 270-282, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29603746

RESUMO

Epigenetic regulation plays a key role in the link between inflammation and cancer. Here we examine Mbd2, which mediates epigenetic transcriptional silencing by binding to methylated DNA. In separate studies the Mbd2-/- mouse has been shown (1) to be resistant to intestinal tumourigenesis and (2) to have an enhanced inflammatory/immune response, observations that are inconsistent with the links between inflammation and cancer. To clarify its role in tumourigenesis and inflammation, we used constitutive and conditional models of Mbd2 deletion to explore its epithelial and non-epithelial roles in the intestine. Using a conditional model, we found that suppression of intestinal tumourigenesis is due primarily to the absence of Mbd2 within the epithelia. Next, we demonstrated, using the DSS colitis model, that non-epithelial roles of Mbd2 are key in preventing the transition from acute to tumour-promoting chronic inflammation. Combining models revealed that prior to inflammation the altered Mbd2-/- immune response plays a role in intestinal tumour suppression. However, following inflammation the intestine converts from tumour suppressive to tumour promoting. To summarise, in the intestine the normal function of Mbd2 is exploited by cancer cells to enable tumourigenesis, while in the immune system it plays a key role in preventing tumour-enabling inflammation. Which role is dominant depends on the inflammation status of the intestine. As environmental interactions within the intestine can alter DNA methylation patterns, we propose that Mbd2 plays a key role in determining whether these interactions are anti- or pro-tumourigenic and this makes it a useful new epigenetic model for inflammation-associated carcinogenesis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Transformação Celular Neoplásica/metabolismo , Colite/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/metabolismo , Animais , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Metilação de DNA , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Sulfato de Dextrana , Modelos Animais de Doenças , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genes APC , Mucosa Intestinal/patologia , Neoplasias Intestinais/induzido quimicamente , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Células Th1/metabolismo , Células Th1/patologia , Células Th2/metabolismo , Células Th2/patologia
17.
EMBO J ; 36(16): 2404-2418, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28716804

RESUMO

Type 2 inflammation is a defining feature of infection with parasitic worms (helminths), as well as being responsible for widespread suffering in allergies. However, the precise mechanisms involved in T helper (Th) 2 polarization by dendritic cells (DCs) are currently unclear. We have identified a previously unrecognized role for type I IFN (IFN-I) in enabling this process. An IFN-I signature was evident in DCs responding to the helminth Schistosoma mansoni or the allergen house dust mite (HDM). Further, IFN-I signaling was required for optimal DC phenotypic activation in response to helminth antigen (Ag), and efficient migration to, and localization with, T cells in the draining lymph node (dLN). Importantly, DCs generated from Ifnar1-/- mice were incapable of initiating Th2 responses in vivo These data demonstrate for the first time that the influence of IFN-I is not limited to antiviral or bacterial settings but also has a central role to play in DC initiation of Th2 responses.


Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/metabolismo , Células Th2/imunologia , Alérgenos/imunologia , Animais , Camundongos , Camundongos Knockout , Pyroglyphidae/imunologia , Receptor de Interferon alfa e beta/deficiência , Schistosoma mansoni/imunologia
18.
J Pediatr Orthop ; 37(7): e436-e439, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28719545

RESUMO

BACKGROUND: Internet searches and social media utilization in health care has exploded over the past 5 years, and patients utilize it to gain information on their health conditions and physicians. Social media has the potential to serve as a means for education, communication, and marketing in all health care specialties. Physicians are sometimes reluctant to engage because of concerns of privacy, litigation, and lack of experience with this modality. Many surgical subspecialties have capitalized on social media but no study to date has examined the specific footprint of pediatric orthopaedic surgeons in this realm. We aim to quantify the utilization of individual social media platforms by pediatric orthopaedic surgeons, and identify any differences between private and hospital-based physicians, but also regional differences. METHODS: Using the Pediatric Orthopaedic Society of North America Member Directory, each active member's social media presence was reviewed through an Internet search. Members were stratified on the basis of practice model and geographic location. Individual Internet searches, social media sites, and number of publications were reviewed for social media presence. RESULTS: Of 987 Pediatric Orthopaedic Society of North America members, 95% had a professional webpage, 14.8% a professional Facebook page, 2.2% a professional Twitter page, 36.8% a LinkedIn profile, 25.8% a ResearchGate profile, 33% at least 1 YouTube. Hospital-based physicians had a lower mean level of utilization of social media compared with their private practice peers, and a higher incidence of Pubmed publications. Private practice physicians had double the social media utilization. Regional differences reveal that practicing Pediatric Orthopaedists in the Northeast had increased utilization of ResearchGate and LinkedIn and the West had the lowest mean social media utilization levels. CONCLUSIONS: The rapid expansion of social media usage by patients and their family members is an undeniable force affecting the health care industry. The Internet and social media platforms provide all physicians with a means to educate patients, collaborate with colleagues, and promote their practice and areas of interest. Our survey indicates that pediatric orthopaedic surgeons may be underutilizing their potential social media presence. LEVELS OF EVIDENCE: Level IV.


Assuntos
Ortopedia , Pediatria , Mídias Sociais/estatística & dados numéricos , Criança , Comunicação em Saúde/métodos , Humanos , Comportamento de Busca de Informação , América do Norte
20.
Semin Immunopathol ; 38(4): 449-60, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27256370

RESUMO

Dendritic cells (DCs) lie at the heart of the innate immune system, specialised at recognising danger signals in many forms including foreign material, infection or tissue damage and initiating powerful adaptive immune and inflammatory responses. In barrier sites such as the lung, the instrumental role that DCs play at the interface between the environment and the host places them in a pivotal position in determining the severity of inflammatory disease. The past few years has seen a significant increase in our fundamental understanding of the subsets of DCs involved in pulmonary immunity, as well as the mechanisms by which they are activated and which they may use to coordinate downstream inflammation and pathology. In this review, we will summarise current understanding of the multi-faceted role that DCs play in the induction, maintenance and regulation of lung immunopathology, with an emphasis on allergic pulmonary disease.


Assuntos
Células Dendríticas/imunologia , Pneumopatias/etiologia , Pulmão/imunologia , Imunidade Adaptativa , Animais , Comunicação Celular , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Hipersensibilidade/epidemiologia , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Tolerância Imunológica/imunologia , Imunidade Inata , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/epidemiologia , Pneumopatias/metabolismo , Pneumopatias/patologia , Ativação Linfocitária/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...