Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338642

RESUMO

IL6 is a proinflammatory cytokine that binds to membrane-bound IL6 receptor (IL6R) or soluble IL6R to signal via gp130 in cis or trans, respectively. We tested the hypothesis that sgp130Fc, which is believed to be a selective IL6 trans-signalling inhibitor, is in fact a non-specific inhibitor of gp130 signalling. In human cancer and primary cells, sgp130Fc inhibited IL6, IL11, OSM and CT1 cis-signalling. The IC50 values of sgp130Fc for IL6 and OSM cis-signalling were markedly (20- to 200-fold) lower than the concentrations of sgp130Fc used in mouse studies and clinical trials. sgp130 inhibited IL6 and OSM signalling in the presence of an ADAM10/17 inhibitor and the absence of soluble IL6R or OSMR, with effects that were indistinguishable from those of a gp130 neutralising antibody. These data show that sgp130Fc does not exclusively block IL6 trans-signalling and reveal instead that broad inhibition of gp130 signalling likely underlies its therapeutic effects. This proposes global or modular inhibition of gp130 as a therapeutic approach for treating human disease.


Assuntos
Citocinas , Interleucina-6 , Camundongos , Humanos , Animais , Citocinas/farmacologia , Receptor gp130 de Citocina/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais , Receptores de Interleucina-6
2.
JACC Heart Fail ; 12(2): 352-363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032570

RESUMO

BACKGROUND: Biological sex has a diverse impact on the cardiovascular system. Its influence on dilated cardiomyopathy (DCM) remains unresolved. OBJECTIVES: This study aims to investigate sex-specific differences in DCM presentation, natural history, and prognostic factors. METHODS: The authors conducted a prospective observational cohort study of DCM patients assessing baseline characteristics, cardiac magnetic resonance imaging, biomarkers, and genotype. The composite outcome was cardiovascular mortality or major heart failure (HF) events. RESULTS: Overall, 206 females and 398 males with DCM were followed for a median of 3.9 years. At baseline, female patients had higher left ventricular ejection fraction, smaller left ventricular volumes, less prevalent mid-wall myocardial fibrosis (23% vs 42%), and lower high-sensitivity cardiac troponin I than males (all P < 0.05) with no difference in time from diagnosis, age at enrollment, N-terminal pro-B-type natriuretic peptide levels, pathogenic DCM genetic variants, myocardial fibrosis extent, or medications used for HF. Despite a more favorable profile, the risk of the primary outcome at 2 years was higher in females than males (8.6% vs 4.4%, adjusted HR: 3.14; 95% CI: 1.55-6.35; P = 0.001). Between 2 and 5 years, the effect of sex as a prognostic modifier attenuated. Age, mid-wall myocardial fibrosis, left ventricular ejection fraction, left atrial volume, N-terminal pro-B-type natriuretic peptide, high-sensitivity cardiac troponin I, left bundle branch block, and NYHA functional class were not sex-specific prognostic factors. CONCLUSIONS: The authors identified a novel paradox in prognosis for females with DCM. Female DCM patients have a paradoxical early increase in major HF events despite less prevalent myocardial fibrosis and a milder phenotype at presentation. Future studies should interrogate the mechanistic basis for these sex differences.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Humanos , Masculino , Feminino , Cardiomiopatia Dilatada/patologia , Peptídeo Natriurético Encefálico , Volume Sistólico , Função Ventricular Esquerda , Estudos Prospectivos , Caracteres Sexuais , Troponina I , Prognóstico , Fibrose
3.
Biochem J ; 480(23): 1987-2008, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38054591

RESUMO

Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3ß/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.


Assuntos
Células Endoteliais , Interleucina-11 , Animais , Humanos , Camundongos , Fibrose , Interleucina-11/genética , Transdução de Sinais
4.
Circ Genom Precis Med ; 16(6): e004200, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38014537

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is an important cause of sudden cardiac death associated with heterogeneous phenotypes, but there is no systematic framework for classifying morphology or assessing associated risks. Here, we quantitatively survey genotype-phenotype associations in HCM to derive a data-driven taxonomy of disease expression. METHODS: We enrolled 436 patients with HCM (median age, 60 years; 28.8% women) with clinical, genetic, and imaging data. An independent cohort of 60 patients with HCM from Singapore (median age, 59 years; 11% women) and a reference population from the UK Biobank (n=16 691; mean age, 55 years; 52.5% women) were also recruited. We used machine learning to analyze the 3-dimensional structure of the left ventricle from cardiac magnetic resonance imaging and build a tree-based classification of HCM phenotypes. Genotype and mortality risk distributions were projected on the tree. RESULTS: Carriers of pathogenic or likely pathogenic variants for HCM had lower left ventricular mass, but greater basal septal hypertrophy, with reduced life span (mean follow-up, 9.9 years) compared with genotype negative individuals (hazard ratio, 2.66 [95% CI, 1.42-4.96]; P<0.002). Four main phenotypic branches were identified using unsupervised learning of 3-dimensional shape: (1) nonsarcomeric hypertrophy with coexisting hypertension; (2) diffuse and basal asymmetrical hypertrophy associated with outflow tract obstruction; (3) isolated basal hypertrophy; and (4) milder nonobstructive hypertrophy enriched for familial sarcomeric HCM (odds ratio for pathogenic or likely pathogenic variants, 2.18 [95% CI, 1.93-2.28]; P=0.0001). Polygenic risk for HCM was also associated with different patterns and degrees of disease expression. The model was generalizable to an independent cohort (trustworthiness, M1: 0.86-0.88). CONCLUSIONS: We report a data-driven taxonomy of HCM for identifying groups of patients with similar morphology while preserving a continuum of disease severity, genetic risk, and outcomes. This approach will be of value in understanding the causes and consequences of disease diversity.


Assuntos
Cardiomiopatia Hipertrófica Familiar , Cardiomiopatia Hipertrófica , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Fenótipo , Genótipo , Hipertrofia/complicações
6.
Front Cardiovasc Med ; 10: 1248468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674806

RESUMO

Background: Diffuse interstitial myocardial fibrosis is a key common pathological manifestation in hypertensive heart disease (HHD) progressing to heart failure (HF). Angiotensin receptor-neprilysin inhibitors (ARNi), now a front-line treatment for HF, confer benefits independent of blood pressure, signifying a multifactorial mode of action beyond hemodynamic regulation. We aim to test the hypothesis that compared with angiotensin II receptor blockade (ARB) alone, ARNi is more effective in regressing diffuse interstitial myocardial fibrosis in HHD. Methods: Role of ARNi in Ventricular Remodeling in Hypertensive LVH (REVERSE-LVH) is a prospective, randomized, open-label, blinded endpoint (PROBE) clinical trial. Adults with hypertension and left ventricular hypertrophy (LVH) according to Asian sex- and age-specific thresholds on cardiovascular magnetic resonance (CMR) imaging are randomized to treatment with either sacubitril/valsartan (an ARNi) or valsartan (an ARB) in 1:1 ratio for a duration of 52 weeks, at the end of which a repeat CMR is performed to assess differential changes from baseline between the two groups. The primary endpoint is the change in CMR-derived diffuse interstitial fibrosis volume. Secondary endpoints include changes in CMR-derived left ventricular mass, volumes, and functional parameters. Serum samples are collected and stored to assess the effects of ARNi, compared with ARB, on circulating biomarkers of cardiac remodeling. The endpoints will be analyzed with reference to the corresponding baseline parameters to evaluate the therapeutic effect of sacubitril/valsartan vs. valsartan. Discussion: REVERSE-LVH will examine the anti-fibrotic potential of sacubitril/valsartan and will offer mechanistic insights into the clinical benefits of sacubitril/valsartan in hypertension in relation to cardiac remodeling. Advancing the knowledge of the pathophysiology of HHD will consolidate effective risk stratification and personalized treatment through a multimodal manner integrating complementary CMR and biomarkers into the conventional care approach.Clinical Trial Registration: ClinicalTrials.gov, identifier, NCT03553810.

7.
Int J Mol Sci ; 24(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37629170

RESUMO

Cardiac fibrosis is a common pathological process in heart disease, representing a therapeutic target. Transforming growth factor ß (TGFß) is the canonical driver of cardiac fibrosis and was recently shown to be dependent on interleukin 11 (IL11) for its profibrotic effects in fibroblasts. In the opposite direction, recombinant human IL11 has been reported as anti-fibrotic and anti-inflammatory in the mouse heart. In this study, we determined the effects of IL11 expression in cardiomyocytes on cardiac pathobiology and function. We used the Cre-loxP system to generate a tamoxifen-inducible mouse with cardiomyocyte-restricted murine Il11 expression. Using protein assays, bulk RNA-sequencing, and in vivo imaging, we analyzed the effects of IL11 on myocardial fibrosis, inflammation, and cardiac function, challenging previous reports suggesting the cardioprotective potential of IL11. TGFß stimulation of cardiomyocytes caused Il11 upregulation. Compared to wild-type controls, Il11-expressing hearts demonstrated severe cardiac fibrosis and inflammation that was associated with the upregulation of cytokines, chemokines, complement factors, and increased inflammatory cells. IL11 expression also activated a program of endothelial-to-mesenchymal transition and resulted in left ventricular dysfunction. Our data define species-matched IL11 as strongly profibrotic and proinflammatory when secreted from cardiomyocytes and further establish IL11 as a disease factor.


Assuntos
Interleucina-11 , Miócitos Cardíacos , Humanos , Animais , Camundongos , Interleucina-11/genética , Inflamação/genética , Citocinas , Fator de Crescimento Transformador beta/genética
8.
Am J Hum Genet ; 110(9): 1482-1495, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37652022

RESUMO

Understanding the penetrance of pathogenic variants identified as secondary findings (SFs) is of paramount importance with the growing availability of genetic testing. We estimated penetrance through large-scale analyses of individuals referred for diagnostic sequencing for hypertrophic cardiomyopathy (HCM; 10,400 affected individuals, 1,332 variants) and dilated cardiomyopathy (DCM; 2,564 affected individuals, 663 variants), using a cross-sectional approach comparing allele frequencies against reference populations (293,226 participants from UK Biobank and gnomAD). We generated updated prevalence estimates for HCM (1:543) and DCM (1:220). In aggregate, the penetrance by late adulthood of rare, pathogenic variants (23% for HCM, 35% for DCM) and likely pathogenic variants (7% for HCM, 10% for DCM) was substantial for dominant cardiomyopathy (CM). Penetrance was significantly higher for variant subgroups annotated as loss of function or ultra-rare and for males compared to females for variants in HCM-associated genes. We estimated variant-specific penetrance for 316 recurrent variants most likely to be identified as SFs (found in 51% of HCM- and 17% of DCM-affected individuals). 49 variants were observed at least ten times (14% of affected individuals) in HCM-associated genes. Median penetrance was 14.6% (±14.4% SD). We explore estimates of penetrance by age, sex, and ancestry and simulate the impact of including future cohorts. This dataset reports penetrance of individual variants at scale and will inform the management of individuals undergoing genetic screening for SFs. While most variants had low penetrance and the costs and harms of screening are unclear, some individuals with highly penetrant variants may benefit from SFs.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Feminino , Masculino , Humanos , Adulto , Penetrância , Cardiomiopatias/genética , Cardiomiopatia Dilatada/genética , Frequência do Gene
9.
Circ Cardiovasc Imaging ; 16(7): 545-553, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37431660

RESUMO

BACKGROUND: Compared with patients with hypertension only, those with hypertension and diabetes (HTN/DM) have worse prognosis. We aimed to characterize morphological differences between hypertension and HTN/DM using cardiovascular magnetic resonance; and compare differentially expressed proteins associated with myocardial fibrosis using high throughput multiplex assays. METHODS: Asymptomatic patients underwent cardiovascular magnetic resonance: 438 patients with hypertension (60±8 years; 59% males) and 167 age- and sex-matched patients with HTN/DM (60±10 years; 64% males). Replacement myocardial fibrosis was defined as nonischemic late gadolinium enhancement on cardiovascular magnetic resonance. Extracellular volume fraction was used as a marker of diffuse myocardial fibrosis. A total of 184 serum proteins (Olink Target Cardiovascular Disease II and III panels) were measured to identify unique signatures associated with myocardial fibrosis in all patients. RESULTS: Despite similar left ventricular mass (P=0.344) and systolic blood pressure (P=0.086), patients with HTN/DM had increased concentricity and worse multidirectional strain (P<0.001 for comparison of all strain measures) compared to hypertension only. Replacement myocardial fibrosis was present in 28% of patients with HTN/DM compared to 16% of those with hypertension (P<0.001). NT-proBNP (N-terminal pro-B-type natriuretic peptide) was the only protein differentially upregulated in hypertension patients with replacement myocardial fibrosis and independently associated with extracellular volume. In patients with HTN/DM, GDF-15 (growth differentiation factor 15) was independently associated with replacement myocardial fibrosis and extracellular volume. Ingenuity Pathway Analysis demonstrated a strong association between increased inflammatory response/immune cell trafficking and myocardial fibrosis in patients with HTN/DM. CONCLUSIONS: Adverse cardiac remodeling was observed in patients with HTN/DM. The novel proteomic signatures and associated biological activities of increased immune and inflammatory response may partly explain these observations.


Assuntos
Cardiomiopatias , Diabetes Mellitus , Hipertensão , Masculino , Humanos , Feminino , Meios de Contraste , Proteômica , Função Ventricular Esquerda/fisiologia , Gadolínio , Hipertensão/diagnóstico , Cardiomiopatias/complicações , Fibrose
10.
Arterioscler Thromb Vasc Biol ; 43(5): 739-754, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924234

RESUMO

BACKGROUND: Marfan Syndrome (MFS) is an inherited connective tissue disorder caused by mutations in the FBN1 (fibrillin-1) gene. Lung abnormalities are common in MFS, but their pathogenesis is poorly understood. IL11 (interleukin-11) causes aortic disease in a mouse model of MFS and was studied here in the lung. METHODS: We examined histological and molecular phenotypes in the lungs of Fbn1C1041G/+ mice (mouse model of Marfan Syndrome [mMFS]), an established mouse model of MFS. To identify IL11-expressing cells, we used immunohistochemistry on lungs of 4- and 16-week-old Fbn1C1041G/+:Il11EGFP/+ reporter mice. We studied the effects of IL11 inhibition by RT-qPCR, immunoblots and histopathology in lungs from genetic or pharmacologic models: (1) 16-week-old IL11 receptor (IL11RA) knockout mMFS mice (Fbn1C1041G/+:Il11ra1-/- mice) and (2) in mMFS mice administered IgG control or interleukin-11 receptor antibodies twice weekly from 4 to 24 weeks of age. RESULTS: mMFS lungs showed progressive loss and enlargement of distal airspaces associated with increased proinflammatory and profibrotic gene expression as well as matrix metalloproteinases 2, 9, and 12. IL11 was increased in mMFS lungs and localized to smooth muscle and endothelial cells in young mMFS mice in the Fbn1C1041G/+:Il11EGFP/+ reporter strain and in fibroblasts, in older mice. In mMFS mice, genetic (Fbn1C1041G/+:Il11ra1-/-) or pharmacologic (anti-interleukin-11 receptor) inhibition of IL11 signaling reduced lung emphysema, fibrosis, and inflammation. This protective effect was associated with reduced pathogenic ERK1/2 signaling and lower metalloproteinase 2, 9, and 12 expression. CONCLUSIONS: IL11 causes lung disease in mMFS. This reveals a shared IL11-driven disease mechanism in lung and aorta in MFS and suggests inhibition of IL11 signaling as a holistic approach for treating multiorgan morbidity in MFS.


Assuntos
Interleucina-11 , Síndrome de Marfan , Enfisema Pulmonar , Animais , Camundongos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibrilina-1/genética , Interleucina-11/genética , Subunidade alfa de Receptor de Interleucina-11 , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Metaloproteinase 2 da Matriz/genética , Camundongos Knockout , Enfisema Pulmonar/complicações , Enfisema Pulmonar/genética
11.
medRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36778260

RESUMO

Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality with both monogenic and polygenic components. We here report results from the largest HCM genome-wide association study (GWAS) and multi-trait analysis (MTAG) including 5,900 HCM cases, 68,359 controls, and 36,083 UK Biobank (UKB) participants with cardiac magnetic resonance (CMR) imaging. We identified a total of 70 loci (50 novel) associated with HCM, and 62 loci (32 novel) associated with relevant left ventricular (LV) structural or functional traits. Amongst the common variant HCM loci, we identify a novel HCM disease gene, SVIL, which encodes the actin-binding protein supervillin, showing that rare truncating SVIL variants cause HCM. Mendelian randomization analyses support a causal role of increased LV contractility in both obstructive and non-obstructive forms of HCM, suggesting common disease mechanisms and anticipating shared response to therapy. Taken together, the findings significantly increase our understanding of the genetic basis and molecular mechanisms of HCM, with potential implications for disease management.

12.
J Cardiovasc Transl Res ; 16(4): 755-757, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36629985

RESUMO

Recent studies have shown IL11 to be pro-fibrotic, pro-inflammatory and anti-regenerative in heart, liver, lung and kidney disease in mice and humans. However, data also show that IL11 is specifically required for appendage regeneration following trauma in some species. In fish, tadpoles and axolotl, IL11 is uniquely upregulated in the regenerative organ, the blastema, following loss of fin, tail or limb. In this short essay I suggest that the pathobiology of IL11 in mammals is rooted in its deep evolutionary role for epimorphic appendage regeneration. In both blastema formation and mammalian disease there is robust IL11-driven fibroblast activation, extracellular matrix production, inflammation and epithelial cell dedifferentiation. While these cellular processes are critical for regeneration in lower species they cause organ failure in mammals. This hypothesis, if correct, may explain the apparent redundancy of IL11 for human health and suggest IL11 as a therapeutic target.


Assuntos
Interleucina-11 , Mamíferos , Animais , Camundongos , Humanos , Mamíferos/fisiologia , Fígado , Fibrose
13.
FEBS J ; 290(5): 1235-1255, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35015342

RESUMO

Cellular senescence within the cardiovascular system has, until recently, been understudied and unappreciated as a factor in the development of age-related cardiovascular diseases such as heart failure, myocardial infarction and atherosclerosis. This is in part due to challenges with defining senescence within post-mitotic cells such as cardiomyocytes. However, recent evidence has demonstrated senescent-like changes, including a senescence-associated secretory phenotype (SASP), in cardiomyocytes in response to ageing and cell stress. Other replicating cells, including fibroblasts and vascular smooth muscle cells, within the cardiovascular system have also been shown to undergo senescence and contribute to disease pathogenesis. These findings coupled with the emergence of senolytic therapies, to target and eliminate senescent cells, have provided fascinating new avenues for management of several age-related cardiovascular diseases with high prevalence. In this review, we discuss the role of senescent cells within the cardiovascular system and highlight the contribution of senescence cells to common cardiovascular diseases. We discuss the emerging role for senolytics in cardiovascular disease management while highlighting important aspects of senescence biology which must be clarified before the potential of senolytics can be fully realized.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Senoterapia , Senescência Celular
14.
Gut ; 72(1): 168-179, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365572

RESUMO

OBJECTIVE: Alcoholic hepatitis (AH) reflects acute exacerbation of alcoholic liver disease (ALD) and is a growing healthcare burden worldwide. Interleukin-11 (IL-11) is a profibrotic, proinflammatory cytokine with increasingly recognised toxicities in parenchymal and epithelial cells. We explored IL-11 serum levels and their prognostic value in patients suffering from AH and cirrhosis of various aetiology and experimental ALD. DESIGN: IL-11 serum concentration and tissue expression was determined in a cohort comprising 50 patients with AH, 110 patients with cirrhosis and 19 healthy volunteers. Findings were replicated in an independent patient cohort (n=186). Primary human hepatocytes exposed to ethanol were studied in vitro. Ethanol-fed wildtype mice were treated with a neutralising murine IL-11 receptor-antibody (anti-IL11RA) and examined for severity signs and markers of ALD. RESULTS: IL-11 serum concentration and hepatic expression increased with severity of liver disease, mostly pronounced in AH. In a multivariate Cox-regression, a serum level above 6.4 pg/mL was a model of end-stage liver disease independent risk factor for transplant-free survival in patients with compensated and decompensated cirrhosis. In mice, severity of alcohol-induced liver inflammation correlated with enhanced hepatic IL-11 and IL11RA expression. In vitro and in vivo, anti-IL11RA reduced pathogenic signalling pathways (extracellular signal-regulated kinases, c-Jun N-terminal kinase, NADPH oxidase 4) and protected hepatocytes and murine livers from ethanol-induced inflammation and injury. CONCLUSION: Pathogenic IL-11 signalling in hepatocytes plays a crucial role in the pathogenesis of ALD and could serve as an independent prognostic factor for transplant-free survival. Blocking IL-11 signalling might be a therapeutic option in human ALD, particularly AH.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Humanos , Camundongos , Animais , Interleucina-11/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Hepatite Alcoólica/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL
15.
Nat Commun ; 13(1): 7497, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470928

RESUMO

The kidney has large regenerative capacity, but this is compromised when kidney damage is excessive and renal tubular epithelial cells (TECs) undergo SNAI1-driven growth arrest. Here we investigate the role of IL11 in TECs, kidney injury and renal repair. IL11 stimulation of TECs induces ERK- and p90RSK-mediated GSK3ß inactivation, SNAI1 upregulation and pro-inflammatory gene expression. Mice with acute kidney injury upregulate IL11 in TECs leading to SNAI1 expression and kidney dysfunction, which is not seen in Il11 deleted mice or in mice administered a neutralizing IL11 antibody in either preemptive or treatment modes. In acute kidney injury, anti-TGFß reduces renal fibrosis but exacerbates inflammation and tubule damage whereas anti-IL11 reduces all pathologies. Mice with TEC-specific deletion of Il11ra1 have reduced pathogenic signaling and are protected from renal injury-induced inflammation, fibrosis, and failure. In a model of chronic kidney disease, anti-IL11 therapy promotes TEC proliferation and parenchymal regeneration, reverses fibroinflammation and restores renal mass and function. These data highlight IL11-induced mesenchymal transition of injured TECs as an important renal pathology and suggest IL11 as a therapeutic target for restoring stalled endogenous regeneration in the diseased kidney.


Assuntos
Injúria Renal Aguda , Anticorpos Neutralizantes , Interleucina-11 , Túbulos Renais , Nefrite , Regeneração , Insuficiência Renal Crônica , Animais , Camundongos , Injúria Renal Aguda/terapia , Fibrose , Subunidade alfa de Receptor de Interleucina-11/genética , Túbulos Renais/fisiologia , Nefrite/terapia , Interleucina-11/antagonistas & inibidores , Interleucina-11/fisiologia , Deleção de Genes , Anticorpos Neutralizantes/uso terapêutico , Insuficiência Renal Crônica/terapia , Modelos Animais de Doenças
16.
Circulation ; 146(15): 1123-1134, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36154167

RESUMO

BACKGROUND: Acute myocarditis is an inflammatory condition that may herald the onset of dilated cardiomyopathy (DCM) or arrhythmogenic cardiomyopathy (ACM). We investigated the frequency and clinical consequences of DCM and ACM genetic variants in a population-based cohort of patients with acute myocarditis. METHODS: This was a population-based cohort of 336 consecutive patients with acute myocarditis enrolled in London and Maastricht. All participants underwent targeted DNA sequencing for well-characterized cardiomyopathy-associated genes with comparison to healthy controls (n=1053) sequenced on the same platform. Case ascertainment in England was assessed against national hospital admission data. The primary outcome was all-cause mortality. RESULTS: Variants that would be considered pathogenic if found in a patient with DCM or ACM were identified in 8% of myocarditis cases compared with <1% of healthy controls (P=0.0097). In the London cohort (n=230; median age, 33 years; 84% men), patients were representative of national myocarditis admissions (median age, 32 years; 71% men; 66% case ascertainment), and there was enrichment of rare truncating variants (tv) in ACM-associated genes (3.1% of cases versus 0.4% of controls; odds ratio, 8.2; P=0.001). This was driven predominantly by DSP-tv in patients with normal LV ejection fraction and ventricular arrhythmia. In Maastricht (n=106; median age, 54 years; 61% men), there was enrichment of rare truncating variants in DCM-associated genes, particularly TTN-tv, found in 7% (all with left ventricular ejection fraction <50%) compared with 1% in controls (odds ratio, 3.6; P=0.0116). Across both cohorts over a median of 5.0 years (interquartile range, 3.9-7.8 years), all-cause mortality was 5.4%. Two-thirds of deaths were cardiovascular, attributable to worsening heart failure (92%) or sudden cardiac death (8%). The 5-year mortality risk was 3.3% in genotype-negative patients versus 11.1% for genotype-positive patients (Padjusted=0.08). CONCLUSIONS: We identified DCM- or ACM-associated genetic variants in 8% of patients with acute myocarditis. This was dominated by the identification of DSP-tv in those with normal left ventricular ejection fraction and TTN-tv in those with reduced left ventricular ejection fraction. Despite differences between cohorts, these variants have clinical implications for treatment, risk stratification, and family screening. Genetic counseling and testing should be considered in patients with acute myocarditis to help reassure the majority while improving the management of those with an underlying genetic variant.


Assuntos
Cardiomiopatia Dilatada , Miocardite , Adulto , Cardiomiopatia Dilatada/genética , Feminino , Coração , Humanos , Masculino , Pessoa de Meia-Idade , Miocardite/diagnóstico , Miocardite/genética , Volume Sistólico , Função Ventricular Esquerda
17.
Nat Commun ; 13(1): 5202, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057633

RESUMO

Spermidine is a natural polyamine that has health benefits and extends life span in several species. Deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH) are key enzymes that utilize spermidine to catalyze the post-translational hypusination of the translation factor EIF5A (EIF5AH). Here, we have found that hepatic DOHH mRNA expression is decreased in patients and mice with non-alcoholic steatohepatitis (NASH), and hepatic cells treated with fatty acids. The mouse and cell culture models of NASH have concomitant decreases in Eif5aH and mitochondrial protein synthesis which leads to lower mitochondrial activity and fatty acid ß-oxidation. Spermidine treatment restores EIF5AH, partially restores protein synthesis and mitochondrial function in NASH, and prevents NASH progression in vivo. Thus, the disrupted DHPS-DOHH-EIF5AH pathway during NASH represents a therapeutic target to increase hepatic protein synthesis and mitochondrial fatty acid oxidation (FAO) and prevent NASH progression.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Espermidina , Animais , Ácidos Graxos , Lisina/metabolismo , Camundongos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Espermidina/farmacologia
18.
iScience ; 25(8): 104806, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35992082

RESUMO

IL11 initiates fibroblast activation but also causes epithelial cell dysfunction. The mechanisms underlying these processes are not known. We report that IL11-stimulated ERK/P90RSK activity causes the phosphorylation of LKB1 at S325 and S428, leading to its inactivation. This inhibits AMPK and activates mTOR across cell types. In stromal cells, IL11-stimulated ERK activity inhibits LKB1/AMPK which is associated with mTOR activation, ⍺SMA expression, and myofibroblast transformation. In hepatocytes and epithelial cells, IL11/ERK activity inhibits LKB1/AMPK leading to mTOR activation, SNAI1 expression, and cell dysfunction. Across cells, IL11-induced phenotypes were inhibited by metformin stimulated AMPK activation. In mice, genetic or pharmacologic manipulation of IL11 activity revealed a critical role of IL11/ERK signaling for LKB1/AMPK inhibition and mTOR activation in fatty liver disease. These data identify the IL11/mTOR axis as a signaling commonality in stromal, epithelial, and cancer cells and reveal a shared IL11-driven mesenchymal program across cell types.

19.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012165

RESUMO

Interleukin 11 (IL11) is upregulated in inflammatory conditions, where it is mostly believed to have anti-inflammatory activity. However, recent studies suggest instead that IL11 promotes inflammation by activating fibroblasts. Here, we assessed whether IL11 is pro- or anti-inflammatory in fibroblasts. Primary cultures of human kidney, lung or skin fibroblasts were stimulated with IL11 that resulted in the transient phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the sustained activation of extracellular signal-regulated protein kinases (ERK). RNA sequencing over a time course of IL11 stimulation revealed a robust but short-lived transcriptional response that was enriched for gene set hallmarks of inflammation and characterized by the upregulation of SERPINB2, TNFRSF18, Interleukin 33 (IL33), CCL20, IL1RL1, CXCL3/5/8, ICAM1 and IL11 itself. IL33 was the most upregulated signaling factor (38-fold, p = 9.8 × 10-5), and IL1RL1, its cognate receptor, was similarly increased (18-fold, p = 1.1 × 10-34). In proteomic studies, IL11 triggered a proinflammatory secretome with the notable upregulation of IL8, IL6, MCP1, CCL20 and CXCL1/5/6, which are important chemotaxins for neutrophils, monocytes, and lymphocytes. IL11 induced IL33 expression across fibroblast types, and the inhibition of STAT3 but not of MEK/ERK prevented this. These data establish IL11 as pro-inflammatory with specific importance for priming the IL33 alarmin response in inflammatory fibroblasts across tissues.


Assuntos
Interleucina-11 , Interleucina-33 , Fibroblastos/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Interleucina-11/genética , Interleucina-11/metabolismo , Interleucina-33/metabolismo , Proteômica
20.
J Med Internet Res ; 24(7): e34669, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35904853

RESUMO

BACKGROUND: Consumer-grade wearable devices enable detailed recordings of heart rate and step counts in free-living conditions. Recent studies have shown that summary statistics from these wearable recordings have potential uses for longitudinal monitoring of health and disease states. However, the relationship between higher resolution physiological dynamics from wearables and known markers of health and disease remains largely uncharacterized. OBJECTIVE: We aimed to derive high-resolution digital phenotypes from observational wearable recordings and to examine their associations with modifiable and inherent markers of cardiometabolic disease risk. METHODS: We introduced a principled framework to extract interpretable high-resolution phenotypes from wearable data recorded in free-living conditions. The proposed framework standardizes the handling of data irregularities; encodes contextual information regarding the underlying physiological state at any given time; and generates a set of 66 minimally redundant features across active, sedentary, and sleep states. We applied our approach to a multimodal data set, from the SingHEART study (NCT02791152), which comprises heart rate and step count time series from wearables, clinical screening profiles, and whole genome sequences from 692 healthy volunteers. We used machine learning to model nonlinear relationships between the high-resolution phenotypes on the one hand and clinical or genomic risk markers for blood pressure, lipid, weight and sugar abnormalities on the other. For each risk type, we performed model comparisons based on Brier scores to assess the predictive value of high-resolution features over and beyond typical baselines. We also qualitatively characterized the wearable phenotypes for participants who had actualized clinical events. RESULTS: We found that the high-resolution features have higher predictive value than typical baselines for clinical markers of cardiometabolic disease risk: the best models based on high-resolution features had 17.9% and 7.36% improvement in Brier score over baselines based on age and gender and resting heart rate, respectively (P<.001 in each case). Furthermore, heart rate dynamics from different activity states contain distinct information (maximum absolute correlation coefficient of 0.15). Heart rate dynamics in sedentary states are most predictive of lipid abnormalities and obesity, whereas patterns in active states are most predictive of blood pressure abnormalities (P<.001). Moreover, in comparison with standard measures, higher resolution patterns in wearable heart rate recordings are better able to represent subtle physiological dynamics related to genomic risk for cardiometabolic disease (improvement of 11.9%-22.0% in Brier scores; P<.001). Finally, illustrative case studies reveal connections between these high-resolution phenotypes and actualized clinical events, even for borderline profiles lacking apparent cardiometabolic risk markers. CONCLUSIONS: High-resolution digital phenotypes recorded by consumer wearables in free-living states have the potential to enhance the prediction of cardiometabolic disease risk and could enable more proactive and personalized health management.


Assuntos
Doenças Cardiovasculares , Dispositivos Eletrônicos Vestíveis , Doenças Cardiovasculares/diagnóstico , Estudos Clínicos como Assunto , Estudos de Coortes , Humanos , Lipídeos , Aprendizado de Máquina , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...