Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 32(7): e2679, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588285

RESUMO

For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high-resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three-stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re-encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least-cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re-encounter data sets versus pseudo-absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re-encounter data) spatial prediction index for mapping species-specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre- and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird-only model for 22 of 24 species-season GAMMs. In particular, the integrated index filled in spatial gaps for species with over-water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual-based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad-scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds.


Assuntos
Migração Animal , Aves , Animais , Estações do Ano , América do Sul
2.
Ecol Evol ; 9(15): 8840-8855, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31410284

RESUMO

Migratory behaviors such as the timing and duration of migration are genetically inherited and can be under strong natural selection, yet we still know very little about the specific genes or molecular pathways that control these behaviors. Studies in candidate genes Clock and Adcyap1 have revealed that both of these loci can be significantly correlated with migratory behaviors in birds, though observed relationships appear to vary across species. We investigated geographic genetic structure of Clock and Adcyap1 in four populations of blackpoll warblers (Setophaga striata), a Neotropical-Nearctic migrant that exhibits geographic variation in migratory timing and duration across its boreal breeding distribution. Further, we used data on migratory timing and duration, obtained from light-level geolocator trackers to investigate candidate genotype-phenotype relationships at the individual level. While we found no geographic structure in either candidate gene, we did find evidence that candidate gene lengths are correlated with five of the six migratory traits. Maximum Clock allele length was significantly and negatively associated with spring arrival date. Minimum Adcyap1 allele length was significantly and negatively associated with spring departure date and positively associated with fall arrival date at the wintering grounds. Additionally, we found a significant interaction between Clock and Adcyap1 allele lengths on both spring and fall migratory duration. Adcyap1 heterozygotes also had significantly shorter migration duration in both spring and fall compared to homozygotes. Our results support the growing body of evidence that Clock and Adcyap1 allele lengths are correlated with migratory behaviors in birds.

4.
Environ Manage ; 44(1): 173-84, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18574622

RESUMO

The importance of riparian vegetation to support stream function and provide riparian bird habitat in semiarid landscapes suggests that standardized assessment tools that include vegetation criteria to evaluate stream health could also be used to assess habitat conditions for riparian-dependent birds. We first evaluated the ability of two visual assessments of woody vegetation in the riparian zone (corridor width and height) to describe variation in the obligate riparian bird ensemble along 19 streams in eastern Oregon. Overall species richness and the abundances of three species all correlated significantly with both, but width was more important than height. We then examined the utility of the riparian zone criteria in three standardized and commonly used rapid visual riparian assessment protocols--the USDI BLM Proper Functioning Condition (PFC) assessment, the USDA NRCS Stream Visual Assessment Protocol (SVAP), and the U.S. EPA Habitat Assessment Field Data Sheet (HAFDS)--to assess potential riparian bird habitat. Based on the degree of correlation of bird species richness with assessment ratings, we found that PFC does not assess obligate riparian bird habitat condition, SVAP provides a coarse estimate, and HAFDS provides the best assessment. We recommend quantitative measures of woody vegetation for all assessments and that all protocols incorporate woody vegetation height. Given that rapid assessments may be the only source of information for thousands of kilometers of streams in the western United States, incorporating simple vegetation measurements is a critical step in evaluating the status of riparian bird habitat and provides a tool for tracking changes in vegetation condition resulting from management decisions.


Assuntos
Biodiversidade , Rios , Aves Canoras/classificação , Animais , Ecologia/métodos , Ecossistema , Oregon , Plantas/química , Plantas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...