Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6677): 1384-1389, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38127761

RESUMO

The marine-based West Antarctic Ice Sheet (WAIS) is considered vulnerable to irreversible collapse under future climate trajectories, and its tipping point may lie within the mitigated warming scenarios of 1.5° to 2°C of the United Nations Paris Agreement. Knowledge of ice loss during similarly warm past climates could resolve this uncertainty, including the Last Interglacial when global sea levels were 5 to 10 meters higher than today and global average temperatures were 0.5° to 1.5°C warmer than preindustrial levels. Using a panel of genome-wide, single-nucleotide polymorphisms of a circum-Antarctic octopus, we show persistent, historic signals of gene flow only possible with complete WAIS collapse. Our results provide the first empirical evidence that the tipping point of WAIS loss could be reached even under stringent climate mitigation scenarios.


Assuntos
Aquecimento Global , Camada de Gelo , Octopodiformes , Regiões Antárticas , Genômica , Água do Mar , Temperatura , Octopodiformes/genética , Polimorfismo de Nucleotídeo Único , Animais
2.
Mol Phylogenet Evol ; 186: 107827, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37257797

RESUMO

The blue-ringed octopus species complex (Hapalochlaena spp.), known to occur from Southern Australia to Japan, currently contains four formally described species (Hapalochlaena maculosa, Hapalochlaena fasciata, Hapalochlaena lunulata and Hapalochlaena nierstraszi). These species are distinguished based on morphological characters (iridescent blue rings and/or lines) along with reproductive strategies. However, the observation of greater morphological diversity than previously captured by the current taxonomic framework indicates that a revision is required. To examine species boundaries within the genus we used mitochondrial (12S rRNA, 16S rRNA, cytochrome c oxidase subunit 1 [COI], cytochrome c oxidase subunit 3 [COIII] and cytochrome b [Cytb]) and genome-wide SNP data (DaRT seq) from specimens collected across its geographic range including variations in depth from 3 m to >100 m. This investigation indicates substantially greater species diversity present within the genus Hapalochlaena than is currently described. We identified 10,346 SNPs across all locations, which when analysed support a minimum of 11 distinct clades. Bayesian phylogenetic analysis of the mitochondrial COI gene on a more limited sample set dates the diversification of the genus to âˆ¼30 mya and corroborates eight of the lineages indicated by the SNP analyses. Furthermore, we demonstrate that the diagnostic lined patterning of H. fasciata found in North Pacific waters and NSW, Australia is polyphyletic and therefore likely the result of convergent evolution. Several "deep water" (>100 m) lineages were also identified in this study with genetic convergence likely to be driven by external selective pressures. Examination of morphological traits, currently being undertaken in a parallel morphological study, is required to describe additional species within the complex.


Assuntos
Octopodiformes , Animais , Filogenia , Octopodiformes/genética , RNA Ribossômico 16S/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Teorema de Bayes , Polimorfismo de Nucleotídeo Único , Ásia
3.
Evol Appl ; 16(2): 293-310, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793689

RESUMO

Genomic studies are uncovering extensive cryptic diversity within reef-building corals, suggesting that evolutionarily and ecologically relevant diversity is highly underestimated in the very organisms that structure coral reefs. Furthermore, endosymbiotic algae within coral host species can confer adaptive responses to environmental stress and may represent additional axes of coral genetic variation that are not constrained by taxonomic divergence of the cnidarian host. Here, we examine genetic variation in a common and widespread, reef-building coral, Acropora tenuis, and its associated endosymbiotic algae along the entire expanse of the Great Barrier Reef (GBR). We use SNPs derived from genome-wide sequencing to characterize the cnidarian coral host and organelles from zooxanthellate endosymbionts (genus Cladocopium). We discover three distinct and sympatric genetic clusters of coral hosts, whose distributions appear associated with latitude and inshore-offshore reef position. Demographic modelling suggests that the divergence history of the three distinct host taxa ranges from 0.5 to 1.5 million years ago, preceding the GBR's formation, and has been characterized by low-to-moderate ongoing inter-taxon gene flow, consistent with occasional hybridization and introgression typifying coral evolution. Despite this differentiation in the cnidarian host, A. tenuis taxa share a common symbiont pool, dominated by the genus Cladocopium (Clade C). Cladocopium plastid diversity is not strongly associated with host identity but varies with reef location relative to shore: inshore colonies contain lower symbiont diversity on average but have greater differences between colonies as compared with symbiont communities from offshore colonies. Spatial genetic patterns of symbiont communities could reflect local selective pressures maintaining coral holobiont differentiation across an inshore-offshore environmental gradient. The strong influence of environment (but not host identity) on symbiont community composition supports the notion that symbiont community composition responds to habitat and may assist in the adaptation of corals to future environmental change.

4.
Mol Biol Evol ; 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36219871

RESUMO

Climate change threatens the survival of coral reefs on a global scale, primarily through mass bleaching and mortality as a result of marine heatwaves. While these short-term effects are clear, predicting the fate of coral reefs over the coming century is a major challenge. One way to understand the longer-term effects of rapid climate change is to examine the response of coral populations to past climate shifts. Coastal and shallow-water marine ecosystems such as coral reefs have been reshaped many times by sea-level changes during the Pleistocene, yet, few studies have directly linked this with its consequences on population demographics, dispersal, and adaptation. Here we use powerful analytical techniques, afforded by haplotype phased whole-genomes, to establish such links for the reef-building coral, Acropora digitifera. We show that three genetically distinct populations are present in northwestern Australia, and that their rapid divergence since the last glacial maximum (LGM) can be explained by a combination of founder-effects and restricted gene flow. Signatures of selective sweeps, too strong to be explained by demographic history, are present in all three populations and overlap with genes that show different patterns of functional enrichment between inshore and offshore habitats. In contrast to rapid divergence in the host, we find that photosymbiont communities are largely undifferentiated between corals from all three locations, spanning almost 1000 km, indicating that selection on host genes and not acquisition of novel symbionts, has been the primary driver of adaptation for this species in northwestern Australia.

5.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35988923

RESUMO

Antimicrobial peptides (AMPs) are a heterogeneous group of short polypeptides that target not only microorganisms but also viruses and cancer cells. Due to their lower selection for resistance compared with traditional antibiotics, AMPs have been attracting the ever-growing attention from researchers, including bioinformaticians. Machine learning represents the most cost-effective method for novel AMP discovery and consequently many computational tools for AMP prediction have been recently developed. In this article, we investigate the impact of negative data sampling on model performance and benchmarking. We generated 660 predictive models using 12 machine learning architectures, a single positive data set and 11 negative data sampling methods; the architectures and methods were defined on the basis of published AMP prediction software. Our results clearly indicate that similar training and benchmark data set, i.e. produced by the same or a similar negative data sampling method, positively affect model performance. Consequently, all the benchmark analyses that have been performed for AMP prediction models are significantly biased and, moreover, we do not know which model is the most accurate. To provide researchers with reliable information about the performance of AMP predictors, we also created a web server AMPBenchmark for fair model benchmarking. AMPBenchmark is available at http://BioGenies.info/AMPBenchmark.


Assuntos
Peptídeos Antimicrobianos , Benchmarking , Antibacterianos , Peptídeos/química
6.
J Nat Prod ; 85(7): 1789-1798, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35829679

RESUMO

Scleractinian corals are crucially important to the health of some of the world's most biodiverse, productive, and economically important marine habitats. Despite this importance, analysis of coral peptidomes is still in its infancy. Here we show that the tentacle extract from the stony coral Heliofungia actiniformis is rich in peptides with diverse and novel structures. We have characterized the sequences and three-dimensional structures of four new peptides, three of which have no known homologues. We show that a 2 kDa peptide, Hact-2, promotes significant cell proliferation on human cells and speculate this peptide may be involved in the remarkable regenerative capacity of corals. We found a 3 kDa peptide, Hact-3, encoded within a fascin-like domain, and homologues of Hact-3 are present in the genomes of other coral species. Two additional peptides, Hact-4 and Hact-SCRiP1, with limited sequence similarity, both contain a beta-defensin-like fold and highlight a structural link with the small cysteine-rich proteins (SCRiP) family of proteins found predominantly in corals. Our results provide a first glimpse into the remarkable and unexplored structural diversity of coral peptides, providing insight into their diversity and putative functions and, given the ancient lineage of corals, potential insight into the evolution of structural motifs.


Assuntos
Antozoários , Animais , Biodiversidade , Ecossistema , Humanos , Peptídeos
7.
Sci Adv ; 8(17): eabl9185, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35476443

RESUMO

At the Rowley Shoals in Western Australia, the prominent reef flat becomes exposed on low tide and the stagnant water in the shallow atoll lagoons heats up, creating a natural laboratory for characterizing the mechanisms of coral resilience to climate change. To explore these mechanisms in the reef coral Acropora tenuis, we collected samples from lagoon and reef slope habitats and combined whole-genome sequencing, ITS2 metabarcoding, experimental heat stress, and transcriptomics. Despite high gene flow across the atoll, we identified clear shifts in allele frequencies between habitats at relatively small linked genomic islands. Common garden heat stress assays showed corals from the lagoon to be more resistant to bleaching, and RNA sequencing revealed marked differences in baseline levels of gene expression between habitats. Our results provide new insight into the complex mechanisms of coral resilience to climate change and highlight the potential for spatially varying selection across complex coral reef seascapes to drive pronounced ecological divergence in climate-related traits.

8.
Mol Phylogenet Evol ; 164: 107265, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34274488

RESUMO

While the escalating impacts of climate change and other anthropogenic pressures on coral reefs are well documented at the coral community level, studies of species-specific trends are less common, owing mostly to the difficulties and uncertainties in delineating coral species. It has also become clear that traditional coral taxonomy based largely on skeletal macromorphology has underestimated the diversity of many coral families. Here, we use targeted enrichment methods to sequence 2476 ultraconserved elements (UCEs) and exonic loci to investigate the relationship between populations of Fungia fungites from Okinawa, Japan, where this species reproduces by brooding (i.e., internal fertilization), and Papua New Guinea and Australia, where it reproduces by broadcast-spawning (i.e., external fertilization). Moreover, we analyzed the relationships between populations of additional fungiid species (Herpolitha limax and Ctenactis spp.) that reproduce only by broadcast-spawning. Our phylogenetic and species delimitation analyses reveal strong biogeographic structuring in both F. fungites and Herpolitha limax, consistent with cryptic speciation in Okinawa in both species and additionally for H. limax in the Red Sea. By combining UCE/exon data and mitochondrial sequences captured in off-target reads, we reinforce earlier findings that Ctenactis, a genus consisting of three nominal morphospecies, is not a natural group. Our results highlight the need for taxonomic and systematic re-evaluations of some species and genera within the family Fungiidae. This work demonstrates that sequence data generated by the application of targeted capture methods can provide objective criteria by which we can test phylogenetic hypotheses based on morphological and/or life history traits.


Assuntos
Agaricales , Antozoários , Animais , Antozoários/genética , Biologia , Recifes de Corais , Filogenia
9.
Curr Biol ; 31(11): 2286-2298.e8, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33811819

RESUMO

Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral species, the framework-builders of coral reefs, remains moderate by comparison. DNA sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed diversity, but the evolutionary and ecological significance of this diversity remains largely unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the Indo-Pacific (Pachyseris speciosa) and uncover, through a comprehensive genomic and phenotypic assessment, that it comprises morphologically indistinguishable but ecologically divergent lineages. Demographic modeling based on whole-genome resequencing indicated that morphological crypsis (across micro- and macromorphological traits) was due to ancient morphological stasis rather than recent divergence. Although the lineages occur sympatrically across shallow and mesophotic habitats, extensive genotyping using a rapid molecular assay revealed differentiation of their ecological distributions. Leveraging "common garden" conditions facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations of genotyped colonies highlighted the potential role of temporal reproductive isolation in the limited admixture, with consistent genomic signatures in genes related to morphogenesis and reproduction. Overall, our findings demonstrate the presence of ecologically and phenotypically divergent coral species without substantial morphological differentiation and provide new leads into the potential mechanisms facilitating such divergence. More broadly, they indicate that our current taxonomic framework for reef-building corals may be scratching the surface of the ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or restore this diversity effectively.


Assuntos
Antozoários/classificação , Biodiversidade , Recifes de Corais , Clima Tropical , Animais , Antozoários/genética , Morfogênese/genética , Reprodução/genética
10.
Bioinformatics ; 36(21): 5262-5263, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-32683445

RESUMO

SUMMARY: Antimicrobial peptides (AMPs) are the key components of the innate immune system that protect against pathogens, regulate the microbiome and are promising targets for pharmaceutical research. Computational tools based on machine learning have the potential to aid discovery of genes encoding novel AMPs but existing approaches are not designed for genome-wide scans. To facilitate such genome-wide discovery of AMPs we developed a fast and accurate AMP classification framework, ampir. ampir is designed for high throughput, integrates well with existing bioinformatics pipelines, and has much higher classification accuracy than existing methods when applied to whole genome data. AVAILABILITY AND IMPLEMENTATION: ampir is implemented primarily in R with core feature calculation methods written in C++. Release versions are available via CRAN and work on all major operating systems. The development version is maintained at https://github.com/legana/ampir. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Software , Aprendizado de Máquina , Proteínas Citotóxicas Formadoras de Poros
11.
Sci Adv ; 6(48)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33246955

RESUMO

Genetic signatures caused by demographic and adaptive processes during past climatic shifts can inform predictions of species' responses to anthropogenic climate change. To identify these signatures in Acropora tenuis, a reef-building coral threatened by global warming, we first assembled the genome from long reads and then used shallow whole-genome resequencing of 150 colonies from the central inshore Great Barrier Reef to inform population genomic analyses. We identify population structure in the host that reflects a Pleistocene split, whereas photosymbiont differences between reefs most likely reflect contemporary (Holocene) conditions. Signatures of selection in the host were associated with genes linked to diverse processes including osmotic regulation, skeletal development, and the establishment and maintenance of symbiosis. Our results suggest that adaptation to post-glacial climate change in A. tenuis has involved selection on many genes, while differences in symbiont specificity between reefs appear to be unrelated to host population structure.

12.
J Nat Prod ; 83(11): 3454-3463, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33166137

RESUMO

Marine organisms produce a diverse range of toxins and bioactive peptides to support predation, competition, and defense. The peptide repertoires of stony corals (order Scleractinia) remain relatively understudied despite the presence of tentacles used for predation and defense that are likely to contain a range of bioactive compounds. Here, we show that a tentacle extract from the mushroom coral, Heliofungia actiniformis, contains numerous peptides with a range of molecular weights analogous to venom profiles from species such as cone snails. Using NMR spectroscopy and mass spectrometry we characterized a 12-residue peptide (Hact-1) with a new sequence (GCHYTPFGLICF) and well-defined ß-hairpin structure stabilized by a single disulfide bond. The sequence is encoded within the genome of the coral and expressed in the polyp body tissue. The structure present is common among toxins and venom peptides, but Hact-1 does not show activity against select examples of Gram-positive and Gram-negative bacteria or a range of ion channels, common properties of such peptides. Instead, it appears to have a limited effect on human peripheral blood mononuclear cells, but the ecological function of the peptide remains unknown. The discovery of this peptide from H. actiniformis is likely to be the first of many from this and related species.


Assuntos
Antozoários/química , Antibacterianos/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Peptídeos/farmacologia
13.
Gigascience ; 9(11)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33175168

RESUMO

BACKGROUND: Cephalopods represent a rich system for investigating the genetic basis underlying organismal novelties. This diverse group of specialized predators has evolved many adaptations including proteinaceous venom. Of particular interest is the blue-ringed octopus genus (Hapalochlaena), which are the only octopods known to store large quantities of the potent neurotoxin, tetrodotoxin, within their tissues and venom gland. FINDINGS: To reveal genomic correlates of organismal novelties, we conducted a comparative study of 3 octopod genomes, including the Southern blue-ringed octopus (Hapalochlaena maculosa). We present the genome of this species and reveal highly dynamic evolutionary patterns at both non-coding and coding organizational levels. Gene family expansions previously reported in Octopus bimaculoides (e.g., zinc finger and cadherins, both associated with neural functions), as well as formation of novel gene families, dominate the genomic landscape in all octopods. Examination of tissue-specific genes in the posterior salivary gland revealed that expression was dominated by serine proteases in non-tetrodotoxin-bearing octopods, while this family was a minor component in H. maculosa. Moreover, voltage-gated sodium channels in H. maculosa contain a resistance mutation found in pufferfish and garter snakes, which is exclusive to the genus. Analysis of the posterior salivary gland microbiome revealed a diverse array of bacterial species, including genera that can produce tetrodotoxin, suggestive of a possible production source. CONCLUSIONS: We present the first tetrodotoxin-bearing octopod genome H. maculosa, which displays lineage-specific adaptations to tetrodotoxin acquisition. This genome, along with other recently published cephalopod genomes, represents a valuable resource from which future work could advance our understanding of the evolution of genomic novelty in this family.


Assuntos
Octopodiformes , Peçonhas , Adaptação Fisiológica , Animais , Genoma , Humanos , Octopodiformes/genética , Tetrodotoxina/toxicidade
14.
Environ Microbiol Rep ; 12(4): 435-443, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32452166

RESUMO

Reef-building corals live in a mutualistic relationship with photosynthetic algae (family Symbiodiniaceae) that usually provide most of the energy required by the coral host. This relationship is sensitive to temperature stress; as little as a 1°C increase often leads to the collapse of the association. This sensitivity has led to an interest in the potential of more stress-tolerant algae to supplement or substitute for the normal Symbiodiniaceae mutualists. In this respect, the apicomplexan-like microalga Chromera is of particular interest due to its greater temperature tolerance. We generated a de novo transcriptome for a Chromera strain isolated from a GBR coral ('GBR Chromera') and compared with those of the reference strain of Chromera ('Sydney Chromera'), and to those of Symbiodiniaceae (Fugacium kawagutii, Cladocopium goreaui and Breviolum minutum), as well as the apicomplexan parasite, Plasmodium falciparum. In contrast to the high sequence divergence amongst representatives of different genera within the family Symbiodiniaceae, the two Chromera strains featured low sequence divergence at orthologous genes, implying that they are likely to be conspecifics. Although KEGG categories provide few criteria by which true coral mutualists might be identified, they do supply a molecular rationalization that explains the ecological dominance of Cladocopium spp. amongst Indo-Pacific reef corals. The presence of HSP20 genes may contribute to the high thermal tolerance of Chromera.


Assuntos
Alveolados/genética , Dinoflagellida/genética , Alveolados/parasitologia , Alveolados/fisiologia , Animais , Antozoários/genética , Antozoários/parasitologia , Antozoários/fisiologia , Recifes de Corais , Dinoflagellida/fisiologia , Fotossíntese , Simbiose , Transcriptoma
15.
J Proteome Res ; 19(4): 1491-1501, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32091901

RESUMO

Cephalopods are known to produce an extensive range of secretions including ink, mucus, and venom. Sepiadariidae, a family of small, benthic bobtail squids, are notable for the high volume of viscous slime they emit when stressed. One species, Sepioloidea lineolata (striped pyjama squid), is covered with glands along the perimeter of the ventral mantle, and these structures are hypothesized to be the source of its slime. Using label-free quantitative proteomics, we analyzed five tissue types (dorsal and ventral mantle muscle, dorsal and ventral epithelium, and ventral mantle glands) and the slime from four individuals. In doing so, we were able to determine the relationship between the slime and the tissues as well as highlight proteins that were specifically identified within the slime and ventral mantle glands. A total of 28 proteins were identified to be highly enriched in slime, and these were composed of peptidases and protease inhibitors. Seven of these proteins contained predicted signal peptides, indicating classical secretion, with four proteins having no identifiable domains or similarity to any known proteins. The ventral mantle glands also appear to be the tissue with the closest overall proteomic composition to the slime; therefore, it is likely that the slime originates, at least in part, from these glands.


Assuntos
Cefalópodes , Decapodiformes , Animais , Secreções Corporais , Humanos , Proteínas , Proteômica
16.
Zoology (Jena) ; 137: 125695, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31759226

RESUMO

It is now recognised that the biology of almost any organism cannot be fully understood without recognising the existence and potential functional importance of associated microbes. Arguably, the emergence of this holistic viewpoint may never have occurred without the development of a crucial molecular technique, 16S rDNA amplicon sequencing, which allowed microbial communities to be easily profiled across a broad range of contexts. A diverse array of molecular techniques are now used to profile microbial communities, infer their evolutionary histories, visualise them in host tissues, and measure their molecular activity. In this review, we examine each of these categories of measurement and inference with a focus on the questions they make tractable, and the degree to which their capabilities and limitations shape our view of the holobiont.


Assuntos
Microbiologia Ambiental , Microbiota , Simbiose
17.
Bioessays ; 41(12): e1900073, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31664724

RESUMO

How genomic innovation translates into organismal organization remains largely unanswered. Possessing the largest invertebrate nervous system, in conjunction with many species-specific organs, coleoid cephalopods (octopuses, squids, cuttlefishes) provide exciting model systems to investigate how organismal novelties evolve. However, dissecting these processes requires novel approaches that enable deeper interrogation of genome evolution. Here, the existence of specific sets of genomic co-evolutionary signatures between expanded gene families, genome reorganization, and novel genes is posited. It is reasoned that their co-evolution has contributed to the complex organization of cephalopod nervous systems and the emergence of ecologically unique organs. In the course of reviewing this field, how the first cephalopod genomic studies have begun to shed light on the molecular underpinnings of morphological novelty is illustrated and their impact on directing future research is described. It is argued that the application and evolutionary profiling of evolutionary signatures from these studies will help identify and dissect the organismal principles of cephalopod innovations. By providing specific examples, the implications of this approach both within and beyond cephalopod biology are discussed.


Assuntos
Cefalópodes/genética , Genoma/genética , Genômica/métodos , Animais , Cefalópodes/classificação , Evolução Molecular , Filogenia
19.
J Proteome Res ; 18(3): 890-899, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30628786

RESUMO

Sepioloidea lineolata, the striped pyjama squid (family Sepiadariidae), is a small species of benthic bobtail squid distributed along the Southern Indo-Pacific coast of Australia. Like other sepiadariid squids, it is known to secrete large volumes of viscous slime when stressed. In order to identify key proteins involved in the function of sepiadariid slimes, we compared the slime proteome of Sepioloidea lineolata with that of a closely related species, Sepiadarium austrinum. Of the 550 protein groups identified in Sepioloidea lineolata slime, 321 had orthologs in Sepiadarium austrinum, and the abundance of these (iBAQ) was highly correlated between species. Both slimes were dominated by a small number of abundant proteins, and several of these were short secreted proteins with no homologues outside the class Cephalopoda. No mucins were identified within either species' slime, suggesting that it is structurally distinct from mucin polymer-based gels found in many vertebrate and echinoderm secretions. The extent of N-glycosylation in the slime of Sepioloidea lineolata was also studied via glycan cleavage with Peptide: N-glycosidase F (PNGase-F). Although very few (four) proteins showed strong evidence of N-glycosylation, we found that treatment with PNGase-F led to a slight increase in peptide identification rates compared with controls.


Assuntos
Secreções Corporais/química , Cefalópodes/química , Proteoma/análise , Animais , Austrália , Decapodiformes/química , Géis , Glicosilação , Mucinas , Proteômica
20.
Brief Bioinform ; 20(2): 384-389, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29106479

RESUMO

EMBL Australia Bioinformatics Resource (EMBL-ABR) is a developing national research infrastructure, providing bioinformatics resources and support to life science and biomedical researchers in Australia. EMBL-ABR comprises 10 geographically distributed national nodes with one coordinating hub, with current funding provided through Bioplatforms Australia and the University of Melbourne for its initial 2-year development phase. The EMBL-ABR mission is to: (1) increase Australia's capacity in bioinformatics and data sciences; (2) contribute to the development of training in bioinformatics skills; (3) showcase Australian data sets at an international level and (4) enable engagement in international programs. The activities of EMBL-ABR are focussed in six key areas, aligning with comparable international initiatives such as ELIXIR, CyVerse and NIH Commons. These key areas-Tools, Data, Standards, Platforms, Compute and Training-are described in this article.


Assuntos
Disciplinas das Ciências Biológicas , Pesquisa Biomédica , Biologia Computacional/educação , Biologia Computacional/métodos , Curadoria de Dados/métodos , Austrália , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...