Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 303(5): F700-10, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718890

RESUMO

The Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) of the kidney is a key determinant of Na(+) balance. Disturbances in NCC function are characterized by disordered volume and blood pressure regulation. However, many details concerning the mechanisms of NCC regulation remain controversial or undefined. This is partially due to the lack of a mammalian cell model of the DCT that is amenable to functional assessment of NCC activity. Previously reported investigations of NCC regulation in mammalian cells have either not attempted measurements of NCC function or have required perturbation of the critical without a lysine kinase (WNK)/STE20/SPS-1-related proline/alanine-rich kinase regulatory pathway before functional assessment. Here, we present a new mammalian model of the DCT, the mouse DCT15 (mDCT15) cell line. These cells display native NCC function as measured by thiazide-sensitive, Cl(-)-dependent (22)Na(+) uptake and allow for the separate assessment of NCC surface expression and activity. Knockdown by short interfering RNA confirmed that this function was dependent on NCC protein. Similar to the mammalian DCT, these cells express many of the known regulators of NCC and display significant baseline activity and dimerization of NCC. As described in previous models, NCC activity is inhibited by appropriate concentrations of thiazides, and phorbol esters strongly suppress function. Importantly, they display release of WNK4 inhibition of NCC by small hairpin RNA knockdown. We feel that this new model represents a critical tool for the study of NCC physiology. The work that can be accomplished in such a system represents a significant step forward toward unraveling the complex regulation of NCC.


Assuntos
Túbulos Renais Distais/fisiologia , Animais , Linhagem Celular , Túbulos Renais Distais/metabolismo , Camundongos , Modelos Animais , Proteínas Serina-Treonina Quinases/farmacologia , Proteínas Serina-Treonina Quinases/fisiologia , Simportadores de Cloreto de Sódio/metabolismo , Tiazidas
2.
Transl Res ; 158(5): 282-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22005268

RESUMO

The sodium chloride cotransporter (NCC) is the principal salt absorptive pathway in the mammalian distal convoluted tubule (DCT) and is the site of action of thiazide diuretics. Using a mammalian cell model system to assess NCC function, we demonstrated previously that Ras guanyl releasing protein 1 (Ras-GRP1) mediates phorbol ester-induced suppression of the function and surface expression of NCC in a protein kinase C (PKC)-independent and extracellular signal-regulated kinase (ERK)1/2-dependent manner. Given that phorbol esters are functional analogs of diacylglycerol (DAG), this finding suggested a potential physiologic regulation of NCC by DAG. The parathyroid hormone (PTH) receptor is a G-protein-coupled receptor that is expressed in the DCT and activates PLC resulting in the generation of DAG. In this article, we demonstrate that PTH suppresses NCC function via a PLC/Ras-GRP1/ERK pathway. A functional assessment of NCC measuring thiazide-sensitive (22)Na(+) flux revealed that PTH suppresses NCC function. The inhibition of PLC prevented the suppression of NCC, indicating that PLC was necessary for this effect. Inhibitors of PKC and protein kinase A (PKA) had no effect on this suppression, but mitogen-activated protein kinase (MAPK) inhibitors prevented the PTH effect completely. Ras-GRP1 activates the MAPK pathway though activation of the small G-protein Ras. Gene silencing of Ras-GRP1 prevented the PTH-mediated suppression of NCC activity, the activation of the H-Ras isoform of Ras, and the activation of ERK1/2 MAPK. This finding confirmed the critical role of Ras-GRP1 in mediating the PTH-induced suppression of NCC activity through stimulation of the MAPK pathway.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Hormônio Paratireóideo/farmacologia , Simportadores de Cloreto de Sódio/fisiologia , Animais , Células Cultivadas , Camundongos , Fosfolipases Tipo C/fisiologia
3.
Am J Physiol Renal Physiol ; 299(2): F300-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20392800

RESUMO

The sodium-chloride cotransporter (NCC) is the principal salt-absorptive pathway in the distal convoluted tubule. Recently, we described a novel pathway of NCC regulation in which phorbol esters (PE) stimulate Ras guanyl-releasing protein 1 (RasGRP1), triggering a cascade ultimately activating ERK1/2 MAPK and decreasing NCC cell surface expression (Ko B, Joshi LM, Cooke LL, Vazquez N, Musch MW, Hebert SC, Gamba G, Hoover RS. Proc Natl Acad Sci USA 104: 20120-20125, 2007). Little is known about the mechanisms which underlie these effects on NCC activity. Regulation of NCC via changes in NCC surface expression has been reported, but endocytosis of NCC has not been demonstrated. In this study, utilizing biotinylation, internalization assays, and a dynamin dominant-negative construct, we demonstrate that the regulation of NCC by PE occurs via an enhancement in internalization of NCC and is dynamin dependent. In addition, immunoprecipitation of NCC and subsequent immunoblotting for ubiquitin showed increased ubiquitination of NCC with phorbol ester treatment. MEK1/2 inhibitors and gene silencing of RasGRP1 indicated that this effect was dependent on RasGRP1 and ERK1/2 activation. Inhibition of ubiquitination prevents any PE-mediated decrease in NCC surface expression as measured by biotinylation or NCC activity as measured by radiotracer uptake. These findings confirmed that the PE effect on NCC is mediated by endocytosis of NCC. Furthermore, ubiquitination of NCC is essential for this process and this ubiquitination is dependent upon RasGRP1-mediated ERK1/2 activation.


Assuntos
Endocitose , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Túbulos Renais Distais/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Droga/metabolismo , Simportadores/metabolismo , Animais , Biotinilação , Western Blotting , Linhagem Celular , Cães , Dinaminas/genética , Dinaminas/metabolismo , Endocitose/efeitos dos fármacos , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Fatores de Troca do Nucleotídeo Guanina/genética , Imunoprecipitação , Túbulos Renais Distais/efeitos dos fármacos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico , Receptores de Droga/efeitos dos fármacos , Receptores de Droga/genética , Membro 3 da Família 12 de Carreador de Soluto , Simportadores/efeitos dos fármacos , Simportadores/genética , Acetato de Tetradecanoilforbol/farmacologia , Transfecção , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinação , Regulação para Cima
4.
Proc Natl Acad Sci U S A ; 104(50): 20120-5, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18077438

RESUMO

The sodium-chloride cotransporter (NCC) is the principal salt-absorptive pathway in the mammalian distal convoluted tubule (DCT) and is the site of action of one of the most effective classes of antihypertensive medications, thiazide diuretics. We developed a cell model system to assess NCC function in a mammalian cell line that natively expresses NCC, the mouse DCT (mDCT) cell line. We used this system to study the complex regulation of NCC by the phorbol ester (PE) 12-O-tetradecanoylphorbol-13-acetate (TPA), a diacylglycerol (DAG) analog. It has generally been thought that PEs mediate their effects on transporters through the activation of PKC. However, there are at least five other DAG/PE targets. Here we describe how one of those alternate targets of DAG/PE effects, Ras guanyl-releasing protein 1 (RasGRP1), mediates the PE-induced suppression of function and the surface expression of NCC. Functional assessment of NCC by using thiazide-sensitive (22)Na(+) uptakes revealed that TPA completely suppresses NCC function. Biotinylation experiments demonstrated that this result was primarily because of decreased surface expression of NCC. Although inhibitors of PKC had no effect on this suppression, MAPK inhibitors completely prevented the TPA effect. RasGRP1 activates the MAPK pathway through activation of the small G protein Ras. Gene silencing of RasGRP1 prevented the PE-mediated suppression of NCC activity, the activation of the H-Ras isoform of Ras, and the activation of ERK1/2 MAPK. This finding confirmed the critical role of RasGRP1 in mediating the PE-induced suppression of NCC activity through the stimulation of the MAPK pathway.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteína Quinase C/fisiologia , Transdução de Sinais/fisiologia , Simportadores de Cloreto de Sódio/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Absorção/efeitos dos fármacos , Absorção/fisiologia , Animais , Células Cultivadas , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...