Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6677): 1363-1364, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38127768

RESUMO

γ-Aminobutyric acid acts on a glutamate receptor, evoking synaptic plasticity.


Assuntos
Plasticidade Neuronal , Receptores de Glutamato , Ácido gama-Aminobutírico , Ácido gama-Aminobutírico/metabolismo , Ácido Glutâmico , Receptores de Glutamato/metabolismo , Animais , Camundongos
2.
Epilepsia ; 63(12): e156-e163, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36161652

RESUMO

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) are ligand-gated cationic channels formed from combinations of GluA1-4 subunits. Pathogenic variants of GRIA1-4 have been described in patients with developmental delay, intellectual disability, autism spectrum disorder, and seizures, with GRIA2 variants typically causing AMPAR loss of function. Here, we identify a novel, heterozygous de novo pathogenic missense mutation in GRIA2 (c.1928 C>T, p.A643V, NM_001083619.1) in a 1-year-old boy with epilepsy, developmental delay, and failure to thrive. We made patch-clamp recordings to compare the functional and pharmacological properties of variant and wild-type receptors expressed in HEK293 cells, with and without the transmembrane AMPAR regulatory protein γ2. This showed GluA2 A643V-containing AMPARs to exhibit a novel gain of function, with greatly slowed deactivation, markedly reduced desensitization, and increased glutamate sensitivity. Perampanel, an antiseizure AMPAR negative allosteric modulator, was able to fully block GluA2 A643V/γ2 currents, suggesting potential therapeutic efficacy. The subsequent introduction of perampanel to the patient's treatment regimen was associated with a marked reduction in seizure burden, a resolution of failure to thrive, and clear developmental gains. Our study reveals that GRIA2 disorder can be caused by a gain-of-function variant, and both predicts and suggests the therapeutic efficacy of perampanel. Perampanel may prove beneficial for patients with other gain-of-function GRIA variants.


Assuntos
Transtorno do Espectro Autista , Insuficiência de Crescimento , Humanos , Lactente , Mutação com Ganho de Função , Células HEK293 , Convulsões/tratamento farmacológico , Convulsões/genética
3.
Mol Pharmacol ; 101(5): 343-356, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246481

RESUMO

AMPA-type gultamate receptors (AMPARs) mediate excitatory signaling in the brain and are therapeutic targets for the treatment of diverse neurological disorders. The receptors interact with a variety of auxiliary subunits, including the transmembrane AMPAR regulatory proteins (TARPs). The TARPs influence AMPAR biosynthesis and trafficking and enhance receptor responses by slowing desensitization and deactivation and increasing single-channel conductance. TARP γ8 has an expression pattern that is distinct from that of other TARPs, being enriched in the hippocampus. Recently, several compounds have been identified that selectivity inhibit γ8-containing AMPARs. One such inhibitor, JNJ-55511118, has shown considerable promise for the treatment of epilepsy. However, key details of its mechanism of action are still lacking. Here, using patch-clamp electrophysiological recording from heterologously expressed AMPARs, we show that JNJ-55511118 inhibits peak currents of γ8-containing AMPARs by decreasing their single-channel conductance. The drug also modifies hallmark features of AMPAR pharmacology, including the TARP-dependent actions of intracellular polyamines and the partial agonist kainate. Moreover, we find that JNJ-55511118 reduces the influence of γ8 on all biophysical measures, aside from its effect on the recovery from desensitization. The drug is also effective when applied intracellularly, suggesting it may access its binding site from within the membrane. Additionally, we find that AMPARs incorporating TARP γ2 mutated to contain the JNJ-55511118 binding site, exhibit greater block than seen with AMPARs containing γ8, potentially reflecting differences in TARP stoichiometry. Taken together, our data provide new insight into the mechanism by which γ8-selective drugs inhibit AMPARs. SIGNIFICANCE STATEMENT: Although modulation of AMPA-type glutamate receptors shows promise for the treatment various neurological conditions, the absence of subtype-selective drugs has hindered adoption of this therapeutic strategy. We made patch-clamp recordings to characterize the actions of the γ8-selective AMPAR inhibitor JNJ-55511118 on GluA2(Q) receptors expressed in HEK cells. We report that JNJ-55511118 inhibits AMPAR-mediated currents by reducing single-channel conductance, providing clear insight into the mechanism of action of this important class of AMPAR modulators.


Assuntos
Canais de Cálcio , Receptores de AMPA , Benzimidazóis , Canais de Cálcio/metabolismo , Proteínas Nucleares , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
4.
Neuropharmacology ; 198: 108781, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34480912

RESUMO

The functional properties of AMPA receptors shape many of the essential features of excitatory synaptic signalling in the brain, including high-fidelity point-to-point transmission and long-term plasticity. Understanding the behaviour and regulation of single AMPAR channels is fundamental in unravelling how central synapses carry, process and store information. There is now an abundance of data on the importance of alternative splicing, RNA editing, and phosphorylation of AMPAR subunits in determining central synaptic diversity. Furthermore, auxiliary subunits have emerged as pivotal players that regulate AMPAR channel properties and add further diversity. Single-channel studies have helped reveal a fascinating picture of the unique behaviour of AMPAR channels - their concentration-dependent single-channel conductance, the basis of their multiple-conductance states, and the influence of auxiliary proteins in controlling many of their gating and conductance properties. Here we summarize basic hallmarks of AMPAR single-channels, in relation to function, diversity and plasticity. We also present data that reveal an unexpected feature of AMPAR sublevel behaviour. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.


Assuntos
Canais Iônicos/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/fisiologia , Animais , Humanos , Transmissão Sináptica
5.
Nat Commun ; 10(1): 4312, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541113

RESUMO

Desensitization is a canonical property of ligand-gated ion channels, causing progressive current decline in the continued presence of agonist. AMPA-type glutamate receptors (AMPARs), which mediate fast excitatory signaling throughout the brain, exhibit profound desensitization. Recent cryo-EM studies of AMPAR assemblies show their ion channels to be closed in the desensitized state. Here we present evidence that homomeric Q/R-edited AMPARs still allow ions to flow when the receptors are desensitized. GluA2(R) expressed alone, or with auxiliary subunits (γ-2, γ-8 or GSG1L), generates large fractional steady-state currents and anomalous current-variance relationships. Our results from fluctuation analysis, single-channel recording, and kinetic modeling, suggest that the steady-state current is mediated predominantly by conducting desensitized receptors. When combined with crystallography this unique functional readout of a hitherto silent state enabled us to examine cross-linked cysteine mutants to probe the conformation of the desensitized ligand binding domain of functioning AMPAR complexes.


Assuntos
Receptores de AMPA/química , Receptores de AMPA/metabolismo , Biofísica , Cristalografia por Raios X , Ácido Glutâmico , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Neurociências , Ligação Proteica , Domínios Proteicos , Receptores de AMPA/genética
6.
Lancet Neurol ; 17(8): 699-708, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30033060

RESUMO

BACKGROUND: Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy. METHODS: For this exome-based case-control study, we used three different genetic generalised epilepsy case cohorts and three independent control cohorts, all of European descent. Cases included in the study were clinically evaluated for genetic generalised epilepsy. Whole-exome sequencing was done for the discovery case cohort, a validation case cohort, and two independent control cohorts. The replication case cohort underwent targeted next-generation sequencing of the 19 known genes encoding subunits of GABAA receptors and was compared to the respective GABAA receptor variants of a third independent control cohort. Functional investigations were done with automated two-microelectrode voltage clamping in Xenopus laevis oocytes. FINDINGS: Statistical comparison of 152 familial index cases with genetic generalised epilepsy in the discovery cohort to 549 ethnically matched controls suggested an enrichment of rare missense (Nonsyn) variants in the ensemble of 19 genes encoding GABAA receptors in cases (odds ratio [OR] 2·40 [95% CI 1·41-4·10]; pNonsyn=0·0014, adjusted pNonsyn=0·019). Enrichment for these genes was validated in a whole-exome sequencing cohort of 357 sporadic and familial genetic generalised epilepsy cases and 1485 independent controls (OR 1·46 [95% CI 1·05-2·03]; pNonsyn=0·0081, adjusted pNonsyn=0·016). Comparison of genes encoding GABAA receptors in the independent replication cohort of 583 familial and sporadic genetic generalised epilepsy index cases, based on candidate-gene panel sequencing, with a third independent control cohort of 635 controls confirmed the overall enrichment of rare missense variants for 15 GABAA receptor genes in cases compared with controls (OR 1·46 [95% CI 1·02-2·08]; pNonsyn=0·013, adjusted pNonsyn=0·027). Functional studies for two selected genes (GABRB2 and GABRA5) showed significant loss-of-function effects with reduced current amplitudes in four of seven tested variants compared with wild-type receptors. INTERPRETATION: Functionally relevant variants in genes encoding GABAA receptor subunits constitute a significant risk factor for genetic generalised epilepsy. Examination of the role of specific gene groups and pathways can disentangle the complex genetic architecture of genetic generalised epilepsy. FUNDING: EuroEPINOMICS (European Science Foundation through national funding organisations), Epicure and EpiPGX (Sixth Framework Programme and Seventh Framework Programme of the European Commission), Research Unit FOR2715 (German Research Foundation and Luxembourg National Research Fund).


Assuntos
Epilepsia Generalizada/genética , Sequenciamento do Exoma/métodos , Predisposição Genética para Doença/genética , Variação Genética/genética , Receptores de GABA-A/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia Generalizada/etnologia , Europa (Continente) , Saúde da Família , Feminino , Humanos , Lactente , Recém-Nascido , Cooperação Internacional , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Adulto Jovem
7.
Cell Rep ; 20(5): 1123-1135, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768197

RESUMO

Fast excitatory transmission in the CNS is mediated mainly by AMPA-type glutamate receptors (AMPARs) associated with transmembrane AMPAR regulatory proteins (TARPs). At the high glutamate concentrations typically seen during synaptic transmission, TARPs slow receptor desensitization and enhance mean channel conductance. However, their influence on channels gated by low glutamate concentrations, as encountered during delayed transmitter clearance or synaptic spillover, is poorly understood. We report here that TARP γ-2 reduces the ability of low glutamate concentrations to cause AMPAR desensitization and enhances channel gating at low glutamate occupancy. Simulations show that, by shifting the balance between AMPAR activation and desensitization, TARPs can markedly facilitate the transduction of spillover-mediated synaptic signaling. Furthermore, the dual effects of TARPs can account for biphasic steady-state glutamate concentration-response curves-a phenomenon termed "autoinactivation," previously thought to reflect desensitization-mediated AMPAR/TARP dissociation.


Assuntos
Canais de Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Receptores de AMPA/metabolismo , Canais de Cálcio/genética , Ácido Glutâmico/genética , Células HEK293 , Humanos , Receptores de AMPA/genética
8.
J Neurosci ; 34(35): 11673-83, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25164663

RESUMO

Many properties of fast synaptic transmission in the brain are influenced by transmembrane AMPAR regulatory proteins (TARPs) that modulate the pharmacology and gating of AMPA-type glutamate receptors (AMPARs). Although much is known about TARP influence on AMPAR pharmacology and kinetics through their modulation of the extracellular ligand-binding domain (LBD), less is known about their regulation of the ion channel region. TARP-induced modifications in AMPAR channel behavior include increased single-channel conductance and weakened block of calcium-permeable AMPARs (CP-AMPARs) by endogenous intracellular polyamines. To investigate how TARPs modify ion flux and channel block, we examined the action of γ-2 (stargazin) on GluA1 and GluA4 CP-AMPARs. First, we compared the permeation of organic cations of different sizes. We found that γ-2 increased the permeability of several cations but not the estimated AMPAR pore size, suggesting that TARP-induced relief of polyamine block does not reflect altered pore diameter. Second, to determine whether residues in the TARP intracellular C-tail regulate polyamine block and channel conductance, we examined various γ-2 C-tail mutants. We identified the membrane proximal region of the C terminus as crucial for full TARP-attenuation of polyamine block, whereas complete deletion of the C-tail markedly enhanced the TARP-induced increase in channel conductance; thus, the TARP C-tail influences ion permeation. Third, we identified a site in the pore-lining region of the AMPAR, close to its Q/R site, that is crucial in determining the TARP-induced changes in single-channel conductance. This conserved residue represents a site of TARP action, independent of the AMPAR LBD.


Assuntos
Canais de Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia , Animais , Linhagem Celular , Humanos , Técnicas de Patch-Clamp , Poliaminas/metabolismo , Ratos , Transfecção
9.
J Neurosci ; 32(29): 9796-804, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22815494

RESUMO

Ionotropic glutamate receptors, which underlie a majority of excitatory synaptic transmission in the CNS, associate with transmembrane proteins that modify their intracellular trafficking and channel gating. Significant advances have been made in our understanding of AMPA-type glutamate receptor (AMPAR) regulation by transmembrane AMPAR regulatory proteins. Less is known about the functional influence of cornichons-unrelated AMPAR-interacting proteins, identified by proteomic analysis. Here we confirm that cornichon homologs 2 and 3 (CNIH-2 and CNIH-3), but not CNIH-1, slow the deactivation and desensitization of both GluA2-containing calcium-impermeable and GluA2-lacking calcium-permeable (CP) AMPARs expressed in tsA201 cells. CNIH-2 and -3 also enhanced the glutamate sensitivity, single-channel conductance, and calcium permeability of CP-AMPARs while decreasing their block by intracellular polyamines. We examined the potential effects of CNIHs on native AMPARs by recording from rat optic nerve oligodendrocyte precursor cells (OPCs), known to express a significant population of CP-AMPARs. These glial cells exhibited surface labeling with an anti-CNIH-2/3 antibody. Two features of their AMPAR-mediated currents-the relative efficacy of the partial agonist kainate (I(KA)/I(Glu) ratio 0.4) and a greater than fivefold potentiation of kainate responses by cyclothiazide-suggest AMPAR association with CNIHs. Additionally, overexpression of CNIH-3 in OPCs markedly slowed AMPAR desensitization. Together, our experiments support the view that CNIHs are capable of altering key properties of AMPARs and suggest that they may do so in glia.


Assuntos
Proteínas do Ovo/metabolismo , Proteínas de Membrana/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Proteínas do Ovo/genética , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Ácido Glutâmico/farmacologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Ácido Caínico/farmacologia , Masculino , Proteínas de Membrana/genética , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Nervo Óptico/citologia , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/metabolismo , Ratos , Receptores de AMPA/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Transfecção
10.
Nat Neurosci ; 12(3): 277-85, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19234459

RESUMO

Although the properties and trafficking of AMPA-type glutamate receptors (AMPARs) depend critically on associated transmembrane AMPAR regulatory proteins (TARPs) such as stargazin (gamma-2), no TARP has been described that can specifically regulate the important class of calcium-permeable (CP-) AMPARs. We examined the stargazin-related protein gamma-5, which is highly expressed in Bergmann glia, a cell type possessing only CP-AMPARs. gamma-5 was previously thought not to be a TARP, and it has been widely used as a negative control. Here we find that, contrary to expectation, gamma-5 acts as a TARP and serves this role in Bergmann glia. Whereas gamma-5 interacts with all AMPAR subunits, and modifies their behavior to varying extents, its main effect is to regulate the function of AMPAR subunit combinations that lack short-form subunits, which constitute predominantly CP-AMPARs. Our results suggest an important role for gamma-5 in regulating the functional contribution of CP-AMPARs.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Receptores de AMPA/classificação , Receptores de AMPA/fisiologia , Animais , Canais de Cálcio/genética , Canais de Cálcio/fisiologia , Sinalização do Cálcio/genética , Linhagem Celular , Permeabilidade da Membrana Celular/genética , Humanos , Neuroglia/química , Neuroglia/metabolismo , Neuroglia/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Transporte Proteico/genética , Ratos , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
11.
Nat Neurosci ; 10(10): 1260-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17873873

RESUMO

Endogenous polyamines profoundly affect the activity of various ion channels, including that of calcium-permeable AMPA-type glutamate receptors (CP-AMPARs). Here we show that stargazin, a transmembrane AMPAR regulatory protein (TARP) known to influence transport, gating and desensitization of AMPARs, greatly reduces block of CP-AMPARs by intracellular polyamines. By decreasing CP-AMPAR affinity for cytoplasmic polyamines, stargazin enhances the charge transfer following single glutamate applications and eliminates the frequency-dependent facilitation seen with repeated applications. In cerebellar stellate cells, which express both synaptic CP-AMPARs and stargazin, we found that the rectification and unitary conductance of channels underlying excitatory postsynaptic currents were matched by those of recombinant AMPARs only when the latter were associated with stargazin. Taken together, our observations establish modulatory actions of stargazin that are specific to CP-AMPARs, and suggest that during synaptic transmission the activity of such receptors, and thus calcium influx, is fundamentally changed by TARPs.


Assuntos
Canais de Cálcio/fisiologia , Neurônios/efeitos dos fármacos , Poliaminas/farmacologia , Receptores de Glutamato/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Cerebelo/citologia , Relação Dose-Resposta à Radiação , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Ácido Glutâmico/farmacologia , Humanos , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/fisiologia , Receptores de Glutamato/efeitos dos fármacos , Espermina/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...