Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 5(7): 657-665, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34211145

RESUMO

Frequent and widespread testing of members of the population who are asymptomatic for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for the mitigation of the transmission of the virus. Despite the recent increases in testing capacity, tests based on quantitative polymerase chain reaction (qPCR) assays cannot be easily deployed at the scale required for population-wide screening. Here, we show that next-generation sequencing of pooled samples tagged with sample-specific molecular barcodes enables the testing of thousands of nasal or saliva samples for SARS-CoV-2 RNA in a single run without the need for RNA extraction. The assay, which we named SwabSeq, incorporates a synthetic RNA standard that facilitates end-point quantification and the calling of true negatives, and that reduces the requirements for automation, purification and sample-to-sample normalization. We used SwabSeq to perform 80,000 tests, with an analytical sensitivity and specificity comparable to or better than traditional qPCR tests, in less than two months with turnaround times of less than 24 h. SwabSeq could be rapidly adapted for the detection of other pathogens.


Assuntos
RNA Viral/genética , SARS-CoV-2/patogenicidade , Saliva/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , SARS-CoV-2/genética , Sensibilidade e Especificidade
2.
medRxiv ; 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32909008

RESUMO

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is due to the high rates of transmission by individuals who are asymptomatic at the time of transmission1,2. Frequent, widespread testing of the asymptomatic population for SARS-CoV-2 is essential to suppress viral transmission. Despite increases in testing capacity, multiple challenges remain in deploying traditional reverse transcription and quantitative PCR (RT-qPCR) tests at the scale required for population screening of asymptomatic individuals. We have developed SwabSeq, a high-throughput testing platform for SARS-CoV-2 that uses next-generation sequencing as a readout. SwabSeq employs sample-specific molecular barcodes to enable thousands of samples to be combined and simultaneously analyzed for the presence or absence of SARS-CoV-2 in a single run. Importantly, SwabSeq incorporates an in vitro RNA standard that mimics the viral amplicon, but can be distinguished by sequencing. This standard allows for end-point rather than quantitative PCR, improves quantitation, reduces requirements for automation and sample-to-sample normalization, enables purification-free detection, and gives better ability to call true negatives. After setting up SwabSeq in a high-complexity CLIA laboratory, we performed more than 80,000 tests for COVID-19 in less than two months, confirming in a real world setting that SwabSeq inexpensively delivers highly sensitive and specific results at scale, with a turn-around of less than 24 hours. Our clinical laboratory uses SwabSeq to test both nasal and saliva samples without RNA extraction, while maintaining analytical sensitivity comparable to or better than traditional RT-qPCR tests. Moving forward, SwabSeq can rapidly scale up testing to mitigate devastating spread of novel pathogens.

3.
Sci Rep ; 10(1): 21759, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303831

RESUMO

Scalable, inexpensive, and secure testing for SARS-CoV-2 infection is crucial for control of the novel coronavirus pandemic. Recently developed highly multiplexed sequencing assays (HMSAs) that rely on high-throughput sequencing can, in principle, meet these demands, and present promising alternatives to currently used RT-qPCR-based tests. However, reliable analysis, interpretation, and clinical use of HMSAs requires overcoming several computational, statistical and engineering challenges. Using recently acquired experimental data, we present and validate a computational workflow based on kallisto and bustools, that utilizes robust statistical methods and fast, memory efficient algorithms, to quickly, accurately and reliably process high-throughput sequencing data. We show that our workflow is effective at processing data from all recently proposed SARS-CoV-2 sequencing based diagnostic tests, and is generally applicable to any diagnostic HMSA.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19 , Técnicas de Diagnóstico Molecular , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Humanos
4.
Cell Rep ; 23(9): 2606-2616, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29847792

RESUMO

X-linked hyper-immunoglobulin M (hyper-IgM) syndrome (XHIM) is a primary immunodeficiency due to mutations in CD40 ligand that affect immunoglobulin class-switch recombination and somatic hypermutation. The disease is amenable to gene therapy using retroviral vectors, but dysregulated gene expression results in abnormal lymphoproliferation in mouse models, highlighting the need for alternative strategies. Here, we demonstrate the ability of both the transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) platforms to efficiently drive integration of a normal copy of the CD40L cDNA delivered by Adeno-Associated Virus. Site-specific insertion of the donor sequence downstream of the endogenous CD40L promoter maintained physiologic expression of CD40L while overriding all reported downstream mutations. High levels of gene modification were achieved in primary human hematopoietic stem cells (HSCs), as well as in cell lines and XHIM-patient-derived T cells. Notably, gene-corrected HSCs engrafted in immunodeficient mice at clinically relevant frequencies. These studies provide the foundation for a permanent curative therapy in XHIM.


Assuntos
Edição de Genes , Doenças Genéticas Ligadas ao Cromossomo X/genética , Células-Tronco Hematopoéticas/metabolismo , Síndrome de Imunodeficiência com Hiper-IgM/genética , Animais , Antígenos CD34/metabolismo , Sequência de Bases , Ligante de CD40/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem Celular , Ensaio de Unidades Formadoras de Colônias , Reparo do DNA , DNA Complementar/genética , Humanos , Camundongos , Linfócitos T/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
5.
Mol Ther ; 26(2): 468-479, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29221806

RESUMO

The use of engineered nucleases combined with a homologous DNA donor template can result in targeted gene correction of the sickle cell disease mutation in hematopoietic stem and progenitor cells. However, because of the high homology between the adjacent human ß- and δ-globin genes, off-target cleavage is observed at δ-globin when using some endonucleases targeted to the sickle mutation in ß-globin. Introduction of multiple double-stranded breaks by endonucleases has the potential to induce intergenic alterations. Using a novel droplet digital PCR assay and high-throughput sequencing, we characterized the frequency of rearrangements between the ß- and δ-globin paralogs when delivering these nucleases. Pooled CD34+ cells and colony-forming units from sickle bone marrow were treated with nuclease only or including a donor template and then analyzed for potential gene rearrangements. It was observed that, in pooled CD34+ cells and colony-forming units, the intergenic ß-δ-globin deletion was the most frequent rearrangement, followed by inversion of the intergenic fragment, with the inter-chromosomal translocation as the least frequent. No rearrangements were observed when endonuclease activity was restricted to on-target ß-globin cleavage. These findings demonstrate the need to develop site-specific endonucleases with high specificity to avoid unwanted gene alterations.


Assuntos
Edição de Genes , Variação Genética , Células-Tronco Hematopoéticas/metabolismo , Globinas beta/genética , Conversão Gênica , Rearranjo Gênico , Marcação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas de Amplificação de Ácido Nucleico , Translocação Genética
6.
Blood ; 129(19): 2624-2635, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28351939

RESUMO

Retroviral gene therapy has proved efficacious for multiple genetic diseases of the hematopoietic system, but roughly half of clinical gene therapy trial protocols using gammaretroviral vectors have reported leukemias in some of the patients treated. In dramatic contrast, 39 adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) patients have been treated with 4 distinct gammaretroviral vectors without oncogenic consequence. We investigated clonal dynamics and diversity in a cohort of 15 ADA-SCID children treated with gammaretroviral vectors and found clear evidence of genotoxicity, indicated by numerous common integration sites near proto-oncogenes and by increased abundance of clones with integrations near MECOM and LMO2 These clones showed stable behavior over multiple years and never expanded to the point of dominance or dysplasia. One patient developed a benign clonal dominance that could not be attributed to insertional mutagenesis and instead likely resulted from expansion of a transduced natural killer clone in response to chronic Epstein-Barr virus viremia. Clonal diversity and T-cell repertoire, measured by vector integration site sequencing and T-cell receptor ß-chain rearrangement sequencing, correlated significantly with the amount of busulfan preconditioning delivered to patients and to CD34+ cell dose. These data, in combination with results of other ADA-SCID gene therapy trials, suggest that disease background may be a crucial factor in leukemogenic potential of retroviral gene therapy and underscore the importance of cytoreductive conditioning in this type of gene therapy approach.


Assuntos
Adenosina Desaminase/deficiência , Agamaglobulinemia/genética , Agamaglobulinemia/terapia , Antineoplásicos Alquilantes/uso terapêutico , Bussulfano/uso terapêutico , Gammaretrovirus/genética , Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Desaminase/genética , Agamaglobulinemia/patologia , Criança , Proteínas de Ligação a DNA/genética , Vetores Genéticos/genética , Humanos , Proteínas com Domínio LIM/genética , Proteína do Locus do Complexo MDS1 e EVI1 , Proteínas Proto-Oncogênicas/genética , Proto-Oncogenes/genética , Imunodeficiência Combinada Severa/patologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/patologia , Fatores de Transcrição/genética
7.
J Clin Invest ; 127(5): 1689-1699, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28346229

RESUMO

BACKGROUND: Autologous hematopoietic stem cell transplantation (HSCT) of gene-modified cells is an alternative to enzyme replacement therapy (ERT) and allogeneic HSCT that has shown clinical benefit for adenosine deaminase-deficient (ADA-deficient) SCID when combined with reduced intensity conditioning (RIC) and ERT cessation. Clinical safety and therapeutic efficacy were evaluated in a phase II study. METHODS: Ten subjects with confirmed ADA-deficient SCID and no available matched sibling or family donor were enrolled between 2009 and 2012 and received transplantation with autologous hematopoietic CD34+ cells that were modified with the human ADA cDNA (MND-ADA) γ-retroviral vector after conditioning with busulfan (90 mg/m2) and ERT cessation. Subjects were followed from 33 to 84 months at the time of data analysis. Safety of the procedure was assessed by recording the number of adverse events. Efficacy was assessed by measuring engraftment of gene-modified hematopoietic stem/progenitor cells, ADA gene expression, and immune reconstitution. RESULTS: With the exception of the oldest subject (15 years old at enrollment), all subjects remained off ERT with normalized peripheral blood mononuclear cell (PBMC) ADA activity, improved lymphocyte numbers, and normal proliferative responses to mitogens. Three of nine subjects were able to discontinue intravenous immunoglobulin replacement therapy. The MND-ADA vector was persistently detected in PBMCs (vector copy number [VCN] = 0.1-2.6) and granulocytes (VCN = 0.01-0.3) through the most recent visits at the time of this writing. No patient has developed a leukoproliferative disorder or other vector-related clinical complication since transplant. CONCLUSION: These results demonstrate clinical therapeutic efficacy from gene therapy for ADA-deficient SCID, with an excellent clinical safety profile. TRIAL REGISTRATION: ClinicalTrials.gov NCT00794508. FUNDING: Food and Drug Administration Office of Orphan Product Development award, RO1 FD003005; NHLBI awards, PO1 HL73104 and Z01 HG000122; UCLA Clinical and Translational Science Institute awards, UL1RR033176 and UL1TR000124.


Assuntos
Adenosina Desaminase/deficiência , Agamaglobulinemia , Regulação Enzimológica da Expressão Gênica , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa , Transdução Genética , Adenosina Desaminase/biossíntese , Adenosina Desaminase/genética , Adolescente , Agamaglobulinemia/enzimologia , Agamaglobulinemia/genética , Agamaglobulinemia/terapia , Autoenxertos , Criança , Pré-Escolar , Feminino , Vetores Genéticos , Humanos , Lactente , Masculino , Retroviridae , Imunodeficiência Combinada Severa/enzimologia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia
8.
Mol Ther ; 24(9): 1561-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27406980

RESUMO

Targeted genome editing technology can correct the sickle cell disease mutation of the ß-globin gene in hematopoietic stem cells. This correction supports production of red blood cells that synthesize normal hemoglobin proteins. Here, we demonstrate that Transcription Activator-Like Effector Nucleases (TALENs) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system can target DNA sequences around the sickle-cell mutation in the ß-globin gene for site-specific cleavage and facilitate precise correction when a homologous donor template is codelivered. Several pairs of TALENs and multiple CRISPR guide RNAs were evaluated for both on-target and off-target cleavage rates. Delivery of the CRISPR/Cas9 components to CD34+ cells led to over 18% gene modification in vitro. Additionally, we demonstrate the correction of the sickle cell disease mutation in bone marrow derived CD34+ hematopoietic stem and progenitor cells from sickle cell disease patients, leading to the production of wild-type hemoglobin. These results demonstrate correction of the sickle mutation in patient-derived CD34+ cells using CRISPR/Cas9 technology.


Assuntos
Anemia Falciforme/genética , Sistemas CRISPR-Cas , Edição de Genes , Células-Tronco Hematopoéticas/metabolismo , Mutação , Reparo Gênico Alvo-Dirigido , Globinas beta/genética , Anemia Falciforme/terapia , Sequência de Bases , Linhagem Celular , Clivagem do DNA , Marcação de Genes , Loci Gênicos , Humanos , Ligação Proteica , RNA Guia de Cinetoplastídeos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
9.
Stem Cells ; 34(5): 1239-50, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26934332

RESUMO

Although clonal studies of lineage potential have been extensively applied to organ specific stem and progenitor cells, much less is known about the clonal origins of lineages formed from the germ layers in early embryogenesis. We applied lentiviral tagging followed by vector integration site analysis (VISA) with high-throughput sequencing to investigate the ontogeny of the hematopoietic, endothelial and mesenchymal lineages as they emerge from human embryonic mesoderm. In contrast to studies that have used VISA to track differentiation of self-renewing stem cell clones that amplify significantly over time, we focused on a population of progenitor clones with limited self-renewal capability. Our analyses uncovered the critical influence of sampling on the interpretation of lentiviral tag sharing, particularly among complex populations with minimal clonal duplication. By applying a quantitative framework to estimate the degree of undersampling we revealed the existence of tripotent mesodermal progenitors derived from pluripotent stem cells, and the subsequent bifurcation of their differentiation into bipotent endothelial/hematopoietic or endothelial/mesenchymal progenitors. Stem Cells 2016;34:1239-1250.


Assuntos
Diferenciação Celular , Técnicas Genéticas , Mesoderma/citologia , Células-Tronco Multipotentes/citologia , Animais , Antígenos CD/metabolismo , Linhagem Celular , Linhagem da Célula , Separação Celular , Células Clonais , Citometria de Fluxo , Humanos , Lentivirus/metabolismo , Camundongos
10.
Mol Ther Methods Clin Dev ; 2: 15012, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029723

RESUMO

Lentiviral vectors designed for the treatment of the hemoglobinopathies require the inclusion of regulatory and strong enhancer elements to achieve sufficient expression of the ß-globin transgene. Despite the inclusion of these elements, the efficacy of these vectors may be limited by transgene silencing due to the genomic environment surrounding the integration site. Barrier insulators can be used to give more consistent expression and resist silencing even with lower vector copies. Here, the barrier activity of an insulator element from the human ankyrin-1 gene was analyzed in a lentiviral vector carrying an antisickling human ß-globin gene. Inclusion of a single copy of the Ankyrin insulator did not affect viral titer, and improved the consistency of expression from the vector in murine erythroleukemia cells. The presence of the Ankyrin insulator element did not change transgene expression in human hematopoietic cells in short-term erythroid culture or in vivo in primary murine transplants. However, analysis in secondary recipients showed that the lentiviral vector with the Ankyrin element preserved transgene expression, whereas expression from the vector lacking the Ankyrin insulator decreased in secondary recipients. These studies demonstrate that the Ankyrin insulator may improve long-term ß-globin expression in hematopoietic stem cells for gene therapy of hemoglobinopathies.

11.
Blood ; 125(17): 2597-604, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25733580

RESUMO

Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the ß-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the ß-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers.


Assuntos
Anemia Falciforme/genética , Anemia Falciforme/terapia , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Mutação , Globinas beta/genética , Anemia Falciforme/patologia , Animais , Antígenos CD34/análise , Sequência de Bases , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células Cultivadas , Endodesoxirribonucleases/metabolismo , Sangue Fetal/transplante , Loci Gênicos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Dados de Sequência Molecular , Dedos de Zinco
12.
Stem Cells ; 33(5): 1532-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25588820

RESUMO

Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by ß-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-ß(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Transdução Genética , ADP-Ribosil Ciclase 1/metabolismo , Animais , Antígenos CD34/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Separação Celular , Células Eritroides/citologia , Vetores Genéticos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lentivirus/genética , Camundongos Endogâmicos NOD , Receptores de LDL/metabolismo
13.
Nucleic Acids Res ; 43(1): 682-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25520191

RESUMO

Lentiviral vectors almost universally use heterologous internal promoters to express transgenes. One of the most commonly used promoter fragments is a 1.2-kb sequence from the human ubiquitin C (UBC) gene, encompassing the promoter, some enhancers, first exon, first intron and a small part of the second exon of UBC. Because splicing can occur after transcription of the vector genome during vector production, we investigated whether the intron within the UBC promoter fragment is faithfully transmitted to target cells. Genetic analysis revealed that more than 80% of proviral forms lack the intron of the UBC promoter. The human elongation factor 1 alpha (EEF1A1) promoter fragment intron was not lost during lentiviral packaging, and this difference between the UBC and EEF1A1 promoter introns was conferred by promoter exonic sequences. UBC promoter intron loss caused a 4-fold reduction in transgene expression. Movement of the expression cassette to the opposite strand prevented intron loss and restored full expression. This increase in expression was mostly due to non-classical enhancer activity within the intron, and movement of putative intronic enhancer sequences to multiple promoter-proximal sites actually repressed expression. Reversal of the UBC promoter also prevented intron loss and restored full expression in bidirectional lentiviral vectors.


Assuntos
Vetores Genéticos , Íntrons , Lentivirus/genética , Regiões Promotoras Genéticas , Ubiquitina C/genética , Elementos Facilitadores Genéticos , Éxons , Expressão Gênica , Células HEK293 , Humanos , Células K562 , Fator 1 de Elongação de Peptídeos/genética , Splicing de RNA
14.
Proc Natl Acad Sci U S A ; 110(50): 20111-6, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24282295

RESUMO

The relationship between the cells that initiate cancer and the cancer stem-like cells that propagate tumors has been poorly defined. In a human prostate tissue transformation model, basal cells expressing the oncogenes Myc and myristoylated AKT can initiate heterogeneous tumors. Tumors contain features of acinar-type adenocarcinoma with elevated eIF4E-driven protein translation and squamous cell carcinoma marked by activated beta-catenin. Lentiviral integration site analysis revealed that alternative histological phenotypes can be clonally derived from a common cell of origin. In advanced disease, adenocarcinoma can be propagated by self-renewing tumor cells with an androgen receptor-low immature luminal phenotype in the absence of basal-like cells. These data indicate that advanced prostate adenocarcinoma initiated in basal cells can be maintained by luminal-like tumor-propagating cells. Determining the cells that maintain human prostate adenocarcinoma and the signaling pathways characterizing these tumor-propagating cells is critical for developing effective therapeutic strategies against this population.


Assuntos
Adenocarcinoma/fisiopatologia , Transformação Celular Neoplásica/metabolismo , Neoplasia de Células Basais/fisiopatologia , Fenótipo , Neoplasias da Próstata/fisiopatologia , Transdução de Sinais/fisiologia , Western Blotting , Fator de Iniciação 4E em Eucariotos/metabolismo , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Imuno-Histoquímica , Masculino , beta Catenina/metabolismo
15.
J Clin Invest ; 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23863630

RESUMO

Autologous hematopoietic stem cell gene therapy is an approach to treating sickle cell disease (SCD) patients that may result in lower morbidity than allogeneic transplantation. We examined the potential of a lentiviral vector (LV) (CCL-ßAS3-FB) encoding a human hemoglobin (HBB) gene engineered to impede sickle hemoglobin polymerization (HBBAS3) to transduce human BM CD34+ cells from SCD donors and prevent sickling of red blood cells produced by in vitro differentiation. The CCL-ßAS3-FB LV transduced BM CD34+ cells from either healthy or SCD donors at similar levels, based on quantitative PCR and colony-forming unit progenitor analysis. Consistent expression of HBBAS3 mRNA and HbAS3 protein compromised a fourth of the total ß-globin-like transcripts and hemoglobin (Hb) tetramers. Upon deoxygenation, a lower percentage of HBBAS3-transduced red blood cells exhibited sickling compared with mock-transduced cells from sickle donors. Transduced BM CD34+ cells were transplanted into immunodeficient mice, and the human cells recovered after 2-3 months were cultured for erythroid differentiation, which showed levels of HBBAS3 mRNA similar to those seen in the CD34+ cells that were directly differentiated in vitro. These results demonstrate that the CCL-ßAS3-FB LV is capable of efficient transfer and consistent expression of an effective anti-sickling ß-globin gene in human SCD BM CD34+ progenitor cells, improving physiologic parameters of the resulting red blood cells.

16.
Proc Natl Acad Sci U S A ; 110(5): 1857-62, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23319634

RESUMO

Positron emission tomography (PET) reporter genes allow noninvasive whole-body imaging of transplanted cells by detection with radiolabeled probes. We used a human deoxycytidine kinase containing three amino acid substitutions within the active site (hdCK3mut) as a reporter gene in combination with the PET probe [(18)F]-L-FMAU (1-(2-deoxy-2-(18)fluoro-ß-L-arabinofuranosyl)-5-methyluracil) to monitor models of mouse and human hematopoietic stem cell (HSC) transplantation. These mutations in hdCK3mut expanded the substrate capacity allowing for reporter-specific detection with a thymidine analog probe. Measurements of long-term engrafted cells (up to 32 wk) demonstrated that hdCK3mut expression is maintained in vivo with no counter selection against reporter-labeled cells. Reporter cells retained equivalent engraftment and differentiation capacity being detected in all major hematopoietic lineages and tissues. This reporter gene and probe should be applicable to noninvasively monitor therapeutic cell transplants in multiple tissues.


Assuntos
Desoxicitidina Quinase/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Animais , Arabinofuranosiluracila/análogos & derivados , Arabinofuranosiluracila/química , Arabinofuranosiluracila/metabolismo , Western Blotting , Linhagem Celular Tumoral , Desoxicitidina Quinase/genética , Feminino , Radioisótopos de Flúor/química , Células-Tronco Hematopoéticas/metabolismo , Imuno-Histoquímica , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Estimativa de Kaplan-Meier , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Endogâmicos , Camundongos Knockout , Camundongos SCID , Mutação , Timo/diagnóstico por imagem , Timo/metabolismo , Fatores de Tempo , Transplante Heterólogo
17.
Stem Cells Transl Med ; 1(1): 36-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23197638

RESUMO

The clinical application of human-induced pluripotent stem cells (hiPSCs) requires not only the production of Good Manufacturing Practice-grade (GMP-grade) hiPSCs but also the derivation of specified cell types for transplantation under GMP conditions. Previous reports have suggested that hiPSCs can be produced in the absence of animal-derived reagents (xenobiotics) to ease the transition to production under GMP standards. However, to facilitate the use of hiPSCs in cell-based therapeutics, their progeny should be produced not only in the absence of xenobiotics but also under GMP conditions requiring extensive standardization of protocols, documentation, and reproducibility of methods and product. Here, we present a successful framework to produce GMP-grade derivatives of hiPSCs that are free of xenobiotic exposure from the collection of patient fibroblasts, through reprogramming, maintenance of hiPSCs, identification of reprogramming vector integration sites (nrLAM-PCR), and finally specification and terminal differentiation of clinically relevant cells. Furthermore, we developed a primary set of Standard Operating Procedures for the GMP-grade derivation and differentiation of these cells as a resource to facilitate widespread adoption of these practices.


Assuntos
Biotecnologia/normas , Fibroblastos/fisiologia , Laboratórios/normas , Células-Tronco Neurais/fisiologia , Neurogênese , Neurônios/fisiologia , Células-Tronco Pluripotentes/fisiologia , Pele/citologia , Animais , Biópsia/normas , Técnicas de Cultura de Células/normas , Separação Celular/normas , Células Cultivadas , Reprogramação Celular , Regulação da Expressão Gênica no Desenvolvimento , Guias como Assunto , Humanos , Masculino , Camundongos , Camundongos SCID , Reação em Cadeia da Polimerase/normas , Controle de Qualidade , Reprodutibilidade dos Testes
18.
J Virol Methods ; 177(1): 1-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21784103

RESUMO

Large-scale lentiviral vector (LV) concentration can be inefficient and time consuming, often involving multiple rounds of filtration and centrifugation. This report describes a simpler method using two tangential flow filtration (TFF) steps to concentrate liter-scale volumes of LV supernatant, achieving in excess of 2000-fold concentration in less than 3h with very high recovery (>97%). Large volumes of LV supernatant can be produced easily through the use of multi-layer flasks, each having 1720 cm(2) surface area and producing ∼560 mL of supernatant per flask. Combining the use of such flasks and TFF greatly simplifies large-scale production of LV. As a demonstration, the method is used to produce a very high titer LV (>10(10)TU/mL) and transduce primary human CD34+ hematopoietic stem/progenitor cells at high final vector concentrations with no overt toxicity. A complex LV (STEMCCA) for induced pluripotent stem cell (iPSC) generation is also concentrated from low initial titer and used to transduce and reprogram primary human fibroblasts with no overt toxicity. Additionally, a generalized and simple multiplexed real-time PCR assay is described for lentiviral vector titer and copy number determination.


Assuntos
Centrifugação , Filtração/métodos , Vetores Genéticos/isolamento & purificação , Lentivirus/isolamento & purificação , Animais , Antígenos CD34/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Células HT29 , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lentivirus/genética , Camundongos , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...