Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cancer Metab ; 12(1): 19, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38951899

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease without meaningful therapeutic options beyond the first salvage therapy. Targeting PDAC metabolism through amino acid restriction has emerged as a promising new strategy, with asparaginases, enzymes that deplete plasma glutamine and asparagine, reaching clinical trials. In this study, we investigated the anti-PDAC activity of the asparaginase formulation Pegcrisantaspase (PegC) alone and in combination with standard-of-care chemotherapeutics. METHODS: Using mouse and human PDAC cell lines, we assessed the impact of PegC on cell proliferation, cell death, and cell cycle progression. We further characterized the in vitro effect of PegC on protein synthesis as well as the generation of reactive oxygen species and levels of glutathione, a major cellular antioxidant. Additional cell line studies examined the effect of the combination of PegC with standard-of-care chemotherapeutics. In vivo, the tolerability and efficacy of PegC, as well as the impact on plasma amino acid levels, was assessed using the C57BL/6-derived KPC syngeneic mouse model. RESULTS: Here we report that PegC demonstrated potent anti-proliferative activity in a panel of human and murine PDAC cell lines. This decrease in proliferation was accompanied by inhibited protein synthesis and decreased levels of glutathione. In vivo, PegC was tolerable and effectively reduced plasma levels of glutamine and asparagine, leading to a statistically significant inhibition of tumor growth in a syngeneic mouse model of PDAC. There was no observable in vitro or in vivo benefit to combining PegC with standard-of-care chemotherapeutics, including oxaliplatin, irinotecan, 5-fluorouracil, paclitaxel, and gemcitabine. Notably, PegC treatment increased tumor expression of asparagine and serine biosynthetic enzymes. CONCLUSIONS: Taken together, our results demonstrate the potential therapeutic use of PegC in PDAC and highlight the importance of identifying candidates for combination regimens that could improve cytotoxicity and/or reduce the induction of resistance pathways.

2.
Ecol Evol ; 14(7): e11705, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975267

RESUMO

Endosymbionts are widespread in arthropods, living in host cells with effects that extend from parasitic to mutualistic. Newly acquired endosymbionts tend to be parasitic, but vertical transmission favors coevolution toward mutualism, with hosts sometimes developing dependency. Endosymbionts negatively affecting host fitness may still spread by impacting host reproductive traits, referred to as reproductive "manipulation," although costs for hosts are often assumed rather than demonstrated. For cytoplasmic incompatibility (CI) that involves endosymbiont-mediated embryo death, theory predicts directional shifts away from "manipulation" toward reduced CI strength; moreover, CI-causing endosymbionts need to increase host fitness to initially spread. In nature, endosymbiont-host interactions and dynamics are complex, often depending on environmental conditions and evolutionary history. We advocate for capturing this complexity through appropriate datasets, rather than relying on terms like "manipulation." Such imprecision can lead to the misclassification of endosymbionts along the parasitism-mutualism continuum.

3.
Commun Biol ; 7(1): 727, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877196

RESUMO

Many insects and other animals carry microbial endosymbionts that influence their reproduction and fitness. These relationships only persist if endosymbionts are reliably transmitted from one host generation to the next. Wolbachia are maternally transmitted endosymbionts found in most insect species, but transmission rates can vary across environments. Maternal transmission of wMel Wolbachia depends on temperature in natural Drosophila melanogaster hosts and in transinfected Aedes aegypti, where wMel is used to block pathogens that cause human disease. In D. melanogaster, wMel transmission declines in the cold as Wolbachia become less abundant in host ovaries and at the posterior pole plasm (the site of germline formation) in mature oocytes. Here, we assess how temperature affects maternal transmission and underlying patterns of Wolbachia localization across 10 Wolbachia strains diverged up to 50 million years-including strains closely related to wMel-and their natural Drosophila hosts. Many Wolbachia maintain high transmission rates across temperatures, despite highly variable (and sometimes low) levels of Wolbachia in the ovaries and at the developing germline in late-stage oocytes. Identifying strains like closely related wMel-like Wolbachia with stable transmission across variable environmental conditions may improve the efficacy of Wolbachia-based biocontrol efforts as they expand into globally diverse environments.


Assuntos
Aedes , Drosophila melanogaster , Ovário , Wolbachia , Wolbachia/fisiologia , Wolbachia/genética , Animais , Feminino , Ovário/microbiologia , Drosophila melanogaster/microbiologia , Aedes/microbiologia , Simbiose , Temperatura , Oócitos/microbiologia
4.
Front Oncol ; 14: 1326754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690164

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy characterized by disrupted blood cell production and function. Recent investigations have highlighted the potential of targeting glutamine metabolism as a promising therapeutic approach for AML. Asparaginases, enzymes that deplete circulating glutamine and asparagine, are approved for the treatment of acute lymphoblastic leukemia, but are also under investigation in AML, with promising results. We previously reported an elevation in plasma serine levels following treatment with Erwinia-derived asparaginase (also called crisantaspase). This led us to hypothesize that AML cells initiate the de novo serine biosynthesis pathway in response to crisantaspase treatment and that inhibiting this pathway in combination with crisantaspase would enhance AML cell death. Here we report that in AML cell lines, treatment with the clinically available crisantaspase, Rylaze, upregulates the serine biosynthesis enzymes phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT1) through activation of the Amino Acid Response (AAR) pathway, a cellular stress response mechanism that regulates amino acid metabolism and protein synthesis under conditions of nutrient limitation. Inhibition of serine biosynthesis through CRISPR-Cas9-mediated knockout of PHGDH resulted in a ~250-fold reduction in the half-maximal inhibitory concentration (IC50) for Rylaze, indicating heightened sensitivity to crisantaspase therapy. Treatment of AML cells with a combination of Rylaze and a small molecule inhibitor of PHGDH (BI4916) revealed synergistic anti-proliferative effects in both cell lines and primary AML patient samples. Rylaze-BI4916 treatment in AML cell lines led to the inhibition of cap-dependent mRNA translation and protein synthesis, as well as a marked decrease in intracellular glutathione levels, a critical cellular antioxidant. Collectively, our results highlight the clinical potential of targeting serine biosynthesis in combination with crisantaspase as a novel therapeutic strategy for AML.

5.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38496649

RESUMO

Many insects and other animals carry microbial endosymbionts that influence their reproduction and fitness. These relationships only persist if endosymbionts are reliably transmitted from one host generation to the next. Wolbachia are maternally transmitted endosymbionts found in most insect species, but transmission rates can vary across environments. Maternal transmission of wMel Wolbachia depends on temperature in natural Drosophila melanogaster hosts and in transinfected Aedes aegypti, where wMel is used to block pathogens that cause human disease. In D. melanogaster, wMel transmission declines in the cold as Wolbachia become less abundant in host ovaries and at the posterior pole plasm (the site of germline formation) in mature oocytes. Here, we assess how temperature affects maternal transmission and underlying patterns of Wolbachia localization across 10 Wolbachia strains diverged up to 50 million years-including strains closely related to wMel-and their natural Drosophila hosts. Many Wolbachia maintain high transmission rates across temperatures, despite highly variable (and sometimes low) levels of Wolbachia in the ovaries and at the developing germline in late-stage oocytes. Identifying strains like closely related wMel-like Wolbachia with stable transmission across variable environmental conditions may improve the efficacy of Wolbachia-based biocontrol efforts as they expand into globally diverse environments.

6.
Acta Trop ; 251: 107115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184292

RESUMO

Identifying the current geographic range of disease vectors is a critical first step towards determining effective mechanisms for controlling and potentially eradicating them. This is particularly true given that historical vector ranges may expand due to changing climates and human activity. The Aedes subgenus Stegomyia contains over 100 species, and among them, Ae. aegypti and Ae. albopictus mosquitoes represent the largest concern for public health, spreading dengue, chikungunya, and zika viruses. While Ae. aegypti has been observed in the country of Zambia for decades, Ae. albopictus has not. In 2015 we sampled four urban and three rural areas in Zambia for Aedes species. Using DNA barcoding, we confirmed the presence of immature and adult Ae. albopictus at two sites: Siavonga and Livingstone. These genotypes seem most closely related to specimens previously collected in Mozambique based on mtDNA barcoding. We resampled Siavonga and Livingstone sites in 2019, again observing immature and adult Ae. albopictus at both sites. Relative Ae. albopictus frequencies were similar between sites, with the exception of immature life stages, which were higher in Siavonga than in Livingstone in 2019. While Ae. albopictus frequencies did not vary through time in Livingstone, both immature and adult frequencies increased through time in Siavonga. This report serves to document the presence of Ae. albopictus in Zambia, which will contribute to understanding the potential public health implications of this disease vector in southern Africa.


Assuntos
Aedes , Febre de Chikungunya , Infecção por Zika virus , Zika virus , Humanos , Animais , Zâmbia , Aedes/genética , Moçambique , Mosquitos Vetores/genética
7.
bioRxiv ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38105949

RESUMO

About half of all insect species carry maternally inherited Wolbachia alphaproteobacteria, making Wolbachia the most common endosymbionts known in nature. Often Wolbachia spread to high frequencies within populations due to cytoplasmic incompatibility (CI), a Wolbachia-induced sperm modification caused by prophage-associated genes (cifs) that kill embryos without Wolbachia. Several Wolbachia variants also block viruses, including wMel from Drosophila melanogaster when transinfected into the mosquito Aedes aegypti. CI enables the establishment and stable maintenance of pathogen-blocking wMel in natural Ae. aegypti populations. These transinfections are reducing dengue disease incidence on multiple continents. While it has long been known that closely related Wolbachia occupy distantly related hosts, the timing of Wolbachia host switching and molecular evolution has not been widely quantified. We provide a new, conservative calibration for Wolbachia chronograms based on examples of co-divergence of Wolbachia and their insect hosts. Synthesizing publicly available and new genomic data, we use our calibration to demonstrate that wMel-like variants separated by only about 370,000 years have naturally colonized holometabolous dipteran and hymenopteran insects that diverged approximately 350 million years ago. Data from Wolbachia variants closely related to those currently dominant in D. melanogaster and D. simulans illustrate that cifs are rapidly acquired and lost among Wolbachia genomes, on a time scale of 104-105 years. This turnover occurs with and without the Wovirus prophages that contain them, with closely related cifs found in distantly related phages and distantly related cifs found in closely related phages. We present evidence for purifying selection on CI rescue function and on particular Cif protein domains. Our results quantify the tempo and mode of rapid host switching and horizontal gene transfer that underlie the spread and diversity of Wolbachia sampled from diverse host species. The wMel variants we highlight from hosts in different climates may offer new options for broadening Wolbachia-based biocontrol of diseases and pests.

8.
Genome Biol Evol ; 15(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37950882

RESUMO

The global impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to considerable interest in detecting novel beneficial mutations and other genomic changes that may signal the development of variants of concern (VOCs). The ability to accurately detect these changes within individual patient samples is important in enabling early detection of VOCs. Such genomic scans for rarely acting positive selection are best performed via comparison of empirical data with simulated data wherein commonly acting evolutionary factors, including mutation and recombination, reproductive and infection dynamics, and purifying and background selection, can be carefully accounted for and parameterized. Although there has been work to quantify these factors in SARS-CoV-2, they have yet to be integrated into a baseline model describing intrahost evolutionary dynamics. To construct such a baseline model, we develop a simulation framework that enables one to establish expectations for underlying levels and patterns of patient-level variation. By varying eight key parameters, we evaluated 12,096 different model-parameter combinations and compared them with existing empirical data. Of these, 592 models (∼5%) were plausible based on the resulting mean expected number of segregating variants. These plausible models shared several commonalities shedding light on intrahost SARS-CoV-2 evolutionary dynamics: severe infection bottlenecks, low levels of reproductive skew, and a distribution of fitness effects skewed toward strongly deleterious mutations. We also describe important areas of model uncertainty and highlight additional sequence data that may help to further refine a baseline model. This study lays the groundwork for the improved analysis of existing and future SARS-CoV-2 within-patient data.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Evolução Biológica , Simulação por Computador , Genômica , Mutação
9.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808696

RESUMO

Identifying the current geographic range of disease vectors is a critical first step towards determining effective mechanisms for controlling and potentially eradicating them. This is particularly true given that historical vector ranges may expand due to changing climates and human activity. The Aedes subgenus Stegomyia contains over 100 species, and among them, Ae. aegypti and Ae. albopictus mosquitoes represent the largest concern for public health, spreading dengue, chikungunya, and Zika viruses. While Ae. aegypti has been observed in the country of Zambia for decades, Ae. albopictus has not. In 2015 we sampled four urban and two rural areas in Zambia for Aedes species. Using DNA barcoding, we confirmed the presence of immature and adult Ae. albopictus at two rural sites: Siavonga and Livingstone. These genotypes seem most closely related to specimens previously collected in Mozambique based on CO1 sequence from mtDNA. We resampled Siavonga and Livingstone sites in 2019, again observing immature and adult Ae. albopictus at both sites. Relative Ae. albopictus frequencies were similar between sites, with the exception of immature life stages, which were higher in Siavonga than in Livingstone in 2019. While Ae. albopictus frequencies did not vary through time in Livingstone, both immature and adult frequencies increased through time in Siavonga. This report serves to document the presence of Ae. albopictus in Zambia, which will contribute to the process of determining the potential public health implications of this disease vector in Central Africa.

10.
bioRxiv ; 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37503016

RESUMO

The global impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to considerable interest in detecting novel beneficial mutations and other genomic changes that may signal the development of variants of concern (VOCs). The ability to accurately detect these changes within individual patient samples is important in enabling early detection of VOCs. Such genomic scans for positive selection are best performed via comparison of empirical data to simulated data wherein evolutionary factors, including mutation and recombination rates, reproductive and infection dynamics, and purifying and background selection, can be carefully accounted for and parameterized. While there has been work to quantify these factors in SARS-CoV-2, they have yet to be integrated into a baseline model describing intra-host evolutionary dynamics. To construct such a baseline model, we develop a simulation framework that enables one to establish expectations for underlying levels and patterns of patient-level variation. By varying eight key parameters, we evaluated 12,096 different model-parameter combinations and compared them to existing empirical data. Of these, 592 models (~5%) were plausible based on the resulting mean expected number of segregating variants. These plausible models shared several commonalities shedding light on intra-host SARS-CoV-2 evolutionary dynamics: severe infection bottlenecks, low levels of reproductive skew, and a distribution of fitness effects skewed towards strongly deleterious mutations. We also describe important areas of model uncertainty and highlight additional sequence data that may help to further refine a baseline model. This study lays the groundwork for the improved analysis of existing and future SARS-CoV-2 within-patient data.

11.
J Chem Phys ; 159(4)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37497820

RESUMO

Simulations of laser-induced electron dynamics in a molecular system are performed using time-dependent (TD) equation-of-motion (EOM) coupled-cluster (CC) theory. The target system has been chosen to highlight potential shortcomings of truncated TD-EOM-CC methods [represented in this work by TD-EOM-CC with single and double excitations (TD-EOM-CCSD)], where unphysical spectroscopic features can emerge. Specifically, we explore driven resonant electronic excitations in magnesium fluoride in the proximity of an avoided crossing. Near the avoided crossing, the CCSD similarity-transformed Hamiltonian is defective, meaning that it has complex eigenvalues, and oscillator strengths may take on negative values. When an external field is applied to drive transitions to states exhibiting these traits, unphysical dynamics are observed. For example, the stationary states that make up the time-dependent state acquire populations that can be negative, exceed one, or even complex-valued.

12.
PLoS Pathog ; 19(4): e1011265, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018331

RESUMO

Over the past 3 years, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread through human populations in several waves, resulting in a global health crisis. In response, genomic surveillance efforts have proliferated in the hopes of tracking and anticipating the evolution of this virus, resulting in millions of patient isolates now being available in public databases. Yet, while there is a tremendous focus on identifying newly emerging adaptive viral variants, this quantification is far from trivial. Specifically, multiple co-occurring and interacting evolutionary processes are constantly in operation and must be jointly considered and modeled in order to perform accurate inference. We here outline critical individual components of such an evolutionary baseline model-mutation rates, recombination rates, the distribution of fitness effects, infection dynamics, and compartmentalization-and describe the current state of knowledge pertaining to the related parameters of each in SARS-CoV-2. We close with a series of recommendations for future clinical sampling, model construction, and statistical analysis.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Genômica
13.
Genetics ; 224(1)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36911919

RESUMO

A broad array of endosymbionts radiate through host populations via vertical transmission, yet much remains unknown concerning the cellular basis, diversity, and routes underlying this transmission strategy. Here, we address these issues, by examining the cellular distributions of Wolbachia strains that diverged up to 50 million years ago in the oocytes of 18 divergent Drosophila species. This analysis revealed 3 Wolbachia distribution patterns: (1) a tight clustering at the posterior pole plasm (the site of germline formation); (2) a concentration at the posterior pole plasm, but with a significant bacteria population distributed throughout the oocyte; and (3) a distribution throughout the oocyte, with none or very few located at the posterior pole plasm. Examination of this latter class indicates Wolbachia accesses the posterior pole plasm during the interval between late oogenesis and the blastoderm formation. We also find that 1 Wolbachia strain in this class concentrates in the posterior somatic follicle cells that encompass the pole plasm of the developing oocyte. In contrast, strains in which Wolbachia concentrate at the posterior pole plasm generally exhibit no or few Wolbachia in the follicle cells associated with the pole plasm. Taken together, these studies suggest that for some Drosophila species, Wolbachia invade the germline from neighboring somatic follicle cells. Phylogenomic analysis indicates that closely related Wolbachia strains tend to exhibit similar patterns of posterior localization, suggesting that specific localization strategies are a function of Wolbachia-associated factors. Previous studies revealed that endosymbionts rely on 1 of 2 distinct routes of vertical transmission: continuous maintenance in the germline (germline-to-germline) or a more circuitous route via the soma (germline-to-soma-to-germline). Here, we provide compelling evidence that Wolbachia strains infecting Drosophila species maintain the diverse arrays of cellular mechanisms necessary for both of these distinct transmission routes. This characteristic may account for its ability to infect and spread globally through a vast range of host insect species.


Assuntos
Wolbachia , Animais , Wolbachia/genética , Drosophila melanogaster , Oócitos , Oogênese , Drosophila/genética
14.
PLoS Biol ; 21(3): e3001879, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947547

RESUMO

Bacteria that live inside the cells of insect hosts (endosymbionts) can alter the reproduction of their hosts, including the killing of male offspring (male killing, MK). MK has only been described in a few insects, but this may reflect challenges in detecting MK rather than its rarity. Here, we identify MK Wolbachia at a low frequency (around 4%) in natural populations of Drosophila pseudotakahashii. MK Wolbachia had a stable density and maternal transmission during laboratory culture, but the MK phenotype which manifested mainly at the larval stage was lost rapidly. MK Wolbachia occurred alongside a second Wolbachia strain expressing a different reproductive manipulation, cytoplasmic incompatibility (CI). A genomic analysis highlighted Wolbachia regions diverged between the 2 strains involving 17 genes, and homologs of the wmk and cif genes implicated in MK and CI were identified in the Wolbachia assembly. Doubly infected males induced CI with uninfected females but not females singly infected with CI-causing Wolbachia. A rapidly spreading dominant nuclear suppressor genetic element affecting MK was identified through backcrossing and subsequent analysis with ddRAD SNPs of the D. pseudotakahashii genome. These findings highlight the complexity of nuclear and microbial components affecting MK endosymbiont detection and dynamics in populations and the challenges of making connections between endosymbionts and the host phenotypes affected by them.


Assuntos
Wolbachia , Animais , Masculino , Wolbachia/genética , Reprodução , Drosophila/genética , Fenótipo , Insetos , Simbiose
15.
Cancer ; 129(4): 521-530, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36484171

RESUMO

BACKGROUND: Immune-checkpoint inhibitors (ICIs) are an effective therapeutic strategy, improving the survival of patients with lung cancer compared with conventional treatments. However, novel predictive biomarkers are needed to stratify which patients derive clinical benefit because the currently used and highly heterogenic histological PD-L1 has shown low accuracy. Liquid biopsy is the analysis of biomarkers in body fluids and represents a minimally invasive tool that can be used to monitor tumor evolution and treatment effects, potentially reducing biases associated with tumor heterogeneity associated with tissue biopsies. In this context, cytokines, such as transforming growth factor-ß (TGF-ß), can be found free in circulation in the blood and packaged into extracellular vesicles (EVs), which have a specific delivery tropism and can affect in tumor/immune system interaction. TGF-ß is an immunosuppressive cytokine that plays a crucial role in tumor immune escape, treatment resistance, and metastasis. Thus, we aimed to evaluate the predictive value of circulating and EV TGF-ß in patients with non-small-cell lung cancer receiving ICIs. METHODS: Plasma samples were collected in 33 patients with advanced non-small-cell lung cancer before and during treatment with ICIs. EV were isolated from plasma by serial ultracentrifugation methods and circulating and EV TGF-ß expression levels were evaluated by enzyme-linked immunosorbent assay. RESULTS: Baseline high expression of TGF-ß in EVs was associated with nonresponse to ICIs as well as shorter progression-free survival and overall survival, outperforming circulating TGF-ß levels and tissue PD-L1 as a predictive biomarker. CONCLUSION: If validated, EV TGF-ß could be used to improve patient stratification, increasing the effectiveness of treatment with ICIs and potentially informing combinatory treatments with TGF-ß blockade. PLAIN LANGUAGE SUMMARY: Treatment with immune-checkpoint inhibitors (ICIs) has improved the survival of some patients with lung cancer. However, the majority of patients do not benefit from this treatment, making it essential to develop more reliable biomarkers to identify patients most likely to benefit. In this pilot study, the expression of transforming growth factor-ß (TGF-ß) in blood circulation and in extracellular vesicles was analyzed. The levels of extracellular vesicle TGF-ß before treatment were able to determine which patients would benefit from treatment with ICIs and have a longer survival with higher accuracy than circulating TGF-ß and tissue PD-L1, which is the currently used biomarker in clinical practice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1 , Fator de Crescimento Transformador beta , Projetos Piloto , Imunoterapia/métodos , Biomarcadores Tumorais , Vesículas Extracelulares/patologia , Fatores de Crescimento Transformadores/uso terapêutico
16.
Front Oncol ; 12: 1035537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578934

RESUMO

The impact of asparaginases on plasma asparagine and glutamine is well established. However, the effect of asparaginases, particularly those derived from Erwinia chrysanthemi (also called crisantaspase), on circulating levels of other amino acids is unknown. We examined comprehensive plasma amino acid panel measurements in healthy immunodeficient/immunocompetent mice as well as in preclinical mouse models of acute myeloid leukemia (AML) and pancreatic ductal adenocarcinoma (PDAC) using long-acting crisantaspase, and in an AML clinical study (NCT02283190) using short-acting crisantaspase. In addition to the expected decrease of plasma glutamine and asparagine, we observed a significant increase in plasma serine and glycine post-crisantaspase. In PDAC tumors, crisantaspase treatment significantly increased expression of serine biosynthesis enzymes. We then systematically reviewed clinical studies using asparaginase products to determine the extent of plasma amino acid reporting and found that only plasma levels of glutamine/glutamate and asparagine/aspartate were reported, without measuring other amino acid changes post-asparaginase. To the best of our knowledge, we are the first to report comprehensive plasma amino acid changes in mice and humans treated with asparaginase. As dysregulated serine metabolism has been implicated in tumor development, our findings offer insights into how leukemia/cancer cells may potentially overcome glutamine/asparagine restriction, which can be used to design future synergistic therapeutic approaches.

17.
Mol Biol Evol ; 39(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36251862

RESUMO

Despite a century of genetic analysis, the evolutionary processes that have generated the patterns of exceptional genetic and phenotypic variation in the model organism Drosophila melanogaster remains poorly understood. In particular, how genetic variation is partitioned within its putative ancestral range in Southern Africa remains unresolved. Here, we study patterns of population genetic structure, admixture, and the spatial structuring of candidate incompatibility alleles across a global sample, including 223 new accessions, predominantly from remote regions in Southern Africa. We identify nine major ancestries, six that primarily occur in Africa and one that has not been previously described. We find evidence for both contemporary and historical admixture between ancestries, with admixture rates varying both within and between continents. For example, while previous work has highlighted an admixture zone between broadly defined African and European ancestries in the Caribbean and southeastern USA, we identify West African ancestry as the most likely African contributor. Moreover, loci showing the strongest signal of introgression between West Africa and the Caribbean/southeastern USA include several genes relating to neurological development and male courtship behavior, in line with previous work showing shared mating behaviors between these regions. Finally, while we hypothesized that potential incompatibility loci may contribute to population genetic structure across the range of D. melanogaster; these loci are, on average, not highly differentiated between ancestries. This work contributes to our understanding of the evolutionary history of a key model system, and provides insight into the partitioning of diversity across its range.


Assuntos
Evolução Biológica , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Alelos , África , Índias Ocidentais , Genética Populacional , Variação Genética
18.
PNAS Nexus ; 1(3): pgac099, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35967981

RESUMO

Divergent hosts often associate with intracellular microbes that influence their fitness. Maternally transmitted Wolbachia bacteria are the most common of these endosymbionts, due largely to cytoplasmic incompatibility (CI) that kills uninfected embryos fertilized by Wolbachia-infected males. Closely related infections in females rescue CI, providing a relative fitness advantage that drives Wolbachia to high frequencies. One prophage-associated gene (cifA) governs rescue, and two contribute to CI (cifA and cifB), but CI strength ranges from very strong to very weak for unknown reasons. Here, we investigate CI-strength variation and its mechanistic underpinnings in a phylogenetic context across 20 million years (MY) of Wolbachia evolution in Drosophila hosts diverged up to 50 MY. These Wolbachia encode diverse Cif proteins (100% to 7.4% pairwise similarity), and AlphaFold structural analyses suggest that CifB sequence similarities do not predict structural similarities. We demonstrate that cifB-transcript levels in testes explain CI strength across all but two focal systems. Despite phylogenetic discordance among cifs and the bulk of the Wolbachia genome, closely related Wolbachia tend to cause similar CI strengths and transcribe cifB at similar levels. This indicates that other non-cif regions of the Wolbachia genome modulate cif-transcript levels. CI strength also increases with the length of the host's larval life stage, presumably due to prolonged cif action. Our findings reveal that cifB-transcript levels largely explain CI strength, while highlighting other covariates. Elucidating CI's mechanism contributes to our understanding of Wolbachia spread in natural systems and to improving the efficacy of CI-based biocontrol of arboviruses and agricultural pests globally.

19.
Inorg Chem ; 61(31): 12197-12206, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35892174

RESUMO

Volatile lanthanide coordination complexes are critical to the generation of new optical and magnetic materials. One of the most common precursors for preparing volatile lanthanide complexes is the hydrate with the general formula Ln(hfac)3(H2O)x (x = 3 for La-Nd, x = 2 for Sm) (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato). We have investigated the synthesis of Ln(hfac)3(H2O)x using more environmentally sustainable mechanochemical approaches. Characterization of the products using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, elemental analysis, and powder X-ray diffraction shows substantial differences in product distribution between methods. The mechanochemical synthesis of the hydrate complexes leads to a variety of coordination compounds including the expected hydrate product, the known retro-Claisen impurity, and hydrated protonated Hhfac ligand depending on the technique employed. Surprisingly, 10-coordinate complexes of the form Na2Ln(hfac)5·3H2O for Ln = La-Nd were also isolated from reactions using a mortar and pestle. The electrostatic bonding of lanthanide coordination complexes is a challenge for obtaining reproducible reactions and clean products. The reproducibility issues are most acute for the large, early lanthanides whereas for the mid to late lanthanides, reproducibility in terms of product distribution and yield is less of an issue because of their smaller size and greater charge to radius ratio. Ball milling increases reproducibility in terms of generating the desired Ln(hfac)3(H2O)x along with hydrated Hhfac (tetraol) and free Hhfac products. The results illustrate the dynamic behavior of lanthanide complexes in solution and the solid state as well as the structural diversity available to the early lanthanides.

20.
Cancer ; 128(15): 2958-2966, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35647938

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PDAC) remains a refractory disease; however, modern cytotoxic chemotherapeutics can induce tumor regression and extend life. A blood-based, pharmacogenomic, chemosensitivity assay using gene expression profiling of circulating tumor and invasive cells (CTICs) to predict treatment response was previously developed. The combination regimen of 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) and gemcitabine/nab-paclitaxel (G/nab-P) are established frontline approaches for treating advanced PDAC; however, there are no validated biomarkers for treatment selection. A similar unmet need exists for choosing second-line therapy. METHODS: The chemosensitivity assay was evaluated in metastatic PDAC patients presenting for frontline treatment. A prospective study enrolled patients (n = 70) before receiving either FOLFIRINOX or G/nab-P at a 1:1 ratio. Six milliliters of peripheral blood was collected at baseline and at time of disease progression. CTICs were isolated, gene-expression profiling was performed, and the assay was used to predict effective and ineffective chemotherapeutic agents. Treating physicians were blinded to the assay prediction results. RESULTS: Patients receiving an effective regimen as predicted by the chemosensitivity assay experienced significantly longer median progression-free survival (mPFS; 7.8 months vs. 4.2 months; hazard ratio [HR], 0.35; p = .0002) and median overall survival (mOS; 21.0 months vs. 9.7 months; HR, 0.40; p = .005), compared with an ineffective regimen. Assay prediction for effective second-line therapy was explored. The entire study cohort experienced favorable outcomes compared with historical controls, 7.1-month mPFS and 12.3-month mOS. CONCLUSIONS: Chemosensitivity assay profiling is a promising tool for guiding therapy in advanced PDAC. Further prospective validation is under way (clinicaltrials.gov NCT03033927).


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Albuminas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desoxicitidina , Fluoruracila , Humanos , Leucovorina , Paclitaxel , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Estudos Prospectivos , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...