Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 20(10): 1941-1955, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253590

RESUMO

B-cell maturation antigen (BCMA) is an attractive therapeutic target highly expressed on differentiated plasma cells in multiple myeloma and other B-cell malignancies. GSK2857916 (belantamab mafodotin, BLENREP) is a BCMA-targeting antibody-drug conjugate approved for the treatment of relapsed/refractory multiple myeloma. We report that GSK2857916 induces immunogenic cell death in BCMA-expressing cancer cells and promotes dendritic cell activation in vitro and in vivo GSK2857916 treatment enhances intratumor immune cell infiltration and activation, delays tumor growth, and promotes durable complete regressions in immune-competent mice bearing EL4 lymphoma tumors expressing human BCMA (EL4-hBCMA). Responding mice are immune to rechallenge with EL4 parental and EL4-hBCMA cells, suggesting engagement of an adaptive immune response, immunologic memory, and tumor antigen spreading, which are abrogated upon depletion of endogenous CD8+ T cells. Combinations with OX40/OX86, an immune agonist antibody, significantly enhance antitumor activity and increase durable complete responses, providing a strong rationale for clinical evaluation of GSK2857916 combinations with immunotherapies targeting adaptive immune responses, including T-cell-directed checkpoint modulators.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antígeno de Maturação de Linfócitos B/antagonistas & inibidores , Linfócitos T CD8-Positivos/imunologia , Imunoconjugados/farmacologia , Morte Celular Imunogênica , Linfoma/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Animais , Anticorpos Monoclonais/química , Apoptose , Antígeno de Maturação de Linfócitos B/imunologia , Proliferação de Células , Feminino , Humanos , Linfoma/imunologia , Linfoma/metabolismo , Linfoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
PLoS One ; 10(3): e0122273, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798945

RESUMO

In addition to classic functions of facilitating hepatobiliary secretion and intestinal absorption of lipophilic nutrients, bile acids (BA) are also endocrine factors and regulate glucose and lipid metabolism. Recent data indicate that antiobesity bariatric procedures e.g. Roux-en-Y gastric bypass surgery (RYGB), which also remit diabetes, increase plasma BAs in humans, leading to the hypothesis that BAs may play a role in diabetes resolution following surgery. To investigate the effect of RYGB on BA physiology and its relationship with glucose homeostasis, we undertook RYGB and SHAM surgery in Zucker diabetic fatty (ZDF) and normoglycemic Sprague Dawley (SD) rats and measured plasma and fecal BA levels, as well as plasma glucose, insulin, Glucagon like peptide 1 (GLP-1) and Peptide YY (PYY), 2 days before and 3, 7, 14 and 28 days after surgery. RYGB decreased body weight and increased plasma GLP-1 in both SD and ZDF rats while decreasing plasma insulin and glucose in ZDF rats starting from the first week. Compared to SHAM groups, both SD-RYGB and ZDF-RYGB groups started to have increases in plasma total BAs in the second week, which might not contribute to early post-surgery metabolic changes. While there was no significant difference in fecal BA excretion between SD-RYGB and SD-SHAM groups, the ZDF-RYGB group had a transient 4.2-fold increase (P<0.001) in 24-hour fecal BA excretion on post-operative day 3 compared to ZDF-SHAM, which paralleled a significant increase in plasma PYY. Ratios of plasma and fecal cholic acid/chenodeoxycholic acid derived BAs were decreased in RYGB groups. In addition, tissue mRNA expression analysis suggested early intestinal BA reabsorption and potentially reduced hepatic cholic acid production in RYGB groups. In summary, we present novel data on RYGB-mediated changes in BA metabolism to further understand the role of BAs in RYGB-induced metabolic effects in humans.


Assuntos
Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/cirurgia , Derivação Gástrica , Animais , Glicemia , Peso Corporal , Diabetes Mellitus Experimental/genética , Modelos Animais de Doenças , Derivação Gástrica/métodos , Polipeptídeo Inibidor Gástrico/sangue , Perfilação da Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/sangue , Insulina/sangue , Especificidade de Órgãos/genética , Peptídeo YY/sangue , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...