Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Org Biomol Chem ; 21(41): 8344-8352, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37800999

RESUMO

Small molecule heterobifunctional degraders (commonly also known as PROTACs) offer tremendous potential to deliver new therapeutics in areas of unmet medical need. To deliver on this promise, a new discipline directed at degrader design and optimization has emerged within medicinal chemistry to address a central challenge, namely how to optimize relatively large, heterobifunctional molecules for activity, whilst maintaining drug-like properties. This process involves simultaneous optimization of the three principle degrader components: E3 ubiquitin ligase ligand, linker, and protein of interest (POI) ligand. A substantial degree of commonality exists with the E3 ligase ligands typically used at the early stages of degrader development, resulting in demand for these compounds as chemical building blocks in degrader research programs. We describe herein a collation of large scale, high-yielding syntheses to access the most utilized E3 ligase ligands to support early-stage degrader development.


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Proteólise , Ligantes , Proteínas/metabolismo
2.
J Endocrinol ; 258(3)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335193

RESUMO

Endogenous glucocorticoids and commonly used oral glucocorticoids have the property of existing in an inactive and active form in vivo. The inactive form can be converted back to the active form, or 'recycled' in cells and tissues that express the 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) enzyme. This recycling provides an important contribution to the action of glucocorticoids. This review examines the literature relating to the importance of 11ß-HSD1 activity during glucocorticoid treatment, with an emphasis on studies examining bone and joint disease and the ability of glucocorticoids to suppress inflammatory damage in models of arthritis. Animal models with global or selective deletion of 11ß-HSD1 have determined the extent to which this recycling is important in normal physiology and during treatment with oral glucocorticoids. These studies demonstrate that 11ß-HSD1-mediated recycling of inactive glucocorticoids has a substantial action and indeed is responsible for the majority of the effects of orally administered glucocorticoids on a range of tissues. Importantly, the anti-inflammatory actions of glucocorticoids appear largely through this mechanism such that mice that lack 11ß-HSD1 are resistant to the anti-inflammatory actions of glucocorticoids. The recognition that to a large extent the circulating inactive counterpart of these glucocorticoids is more important to anti-inflammatory effects than the active glucocorticoid presents novel opportunities to more selectively target glucocorticoids to tissues or to reduce the likely side effects.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Glucocorticoides , Camundongos , Animais , Glucocorticoides/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Osso e Ossos
3.
J Child Adolesc Psychopharmacol ; 33(3): 78-90, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37074331

RESUMO

Objectives: Knowledge is limited regarding the adverse effects of therapeutic glucocorticoids on pediatric mental health outcomes. Glucocorticoid-induced psychosis (GIP) is a rare but severe side effect of high-dose glucocorticoid therapy in children and adolescents. This study identified reported pediatric cases of GIP, based on DSM-5 criteria, and defined its presentation, treatments, and outcomes. Methods: A systematic review was completed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, including pediatric patients with incident psychosis following glucocorticoid treatment. Patient demographics, clinical presentation, interventions, outcomes, and long-term management were extracted from individual cases. Results: Of 1131 articles screened, 28 reports were included, comprising of 31 patients. The mean age was 13 years, and 61% of patients were male. The most common medical illnesses requiring administration of high dose glucocorticoids were asthma (23%) and acute lymphoblastic leukemia (23%). The most common glucocorticoid used was prednisone (35%), and most patients (91%) received doses greater than or equal to 40 mg/day of prednisone. The range of time to symptom onset was 1 day to 7 months. Hallucinations alone (45%) were the most reported feature of GIP. Glucocorticoids were discontinued in 52% of cases, reduced in dosage in 32%, and 81% of affected patients were prescribed psychotropic medications. Long-term management plans and prophylactic psychotropic use were not mentioned in 52% of cases. Symptoms resolved in 90% of patients, and the majority (71%) had no recurrence of psychiatric symptoms. Conclusions: GIP can generally be managed by tapering the causative agent with adjunctive second-generation antipsychotics if psychotic symptoms persist. All patients in this review had complete resolution or improvement of their psychotic symptoms; however, there is likely reporting bias due to the expected underreporting of negative outcomes. Managing clinicians must take a circumspect approach when prescribing high-dose glucocorticoids to minimize the risk of serious but preventable side effects.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Criança , Humanos , Adolescente , Masculino , Feminino , Glucocorticoides/efeitos adversos , Prednisona , Transtornos Psicóticos/tratamento farmacológico , Antipsicóticos/uso terapêutico , Psicotrópicos/uso terapêutico
4.
Burns Trauma ; 11: tkac052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36694861

RESUMO

Background: Excessive scarring and fibrosis are the most severe and common complications of burn injury. Prolonged exposure to high levels of glucocorticoids detrimentally impacts on skin, leading to skin thinning and impaired wound healing. Skin can generate active glucocorticoids locally through expression and activity of the 11ß-hydroxysteroid dehydrogenase type 1 enzyme (11ß-HSD1). We hypothesised that burn injury would induce 11ß-HSD1 expression and local glucocorticoid metabolism, which would have important impacts on wound healing, fibrosis and scarring. We additionally proposed that pharmacological manipulation of this system could improve aspects of post-burn scarring. Methods: Skin 11ß-HSD1 expression in burns patients and mice was examined. The impacts of 11ß-HSD1 mediating glucocorticoid metabolism on burn wound healing, scar formation and scar elasticity and quality were additionally examined using a murine 11ß-HSD1 genetic knockout model. Slow-release scaffolds containing therapeutic agents, including active and inactive glucocorticoids, were developed and pre-clinically tested in mice with burn injury. Results: We demonstrate that 11ß-HSD1 expression levels increased substantially in both human and mouse skin after burn injury. 11ß-HSD1 knockout mice experienced faster wound healing than wild type mice but the healed wounds manifested significantly more collagen deposition, tensile strength and stiffness, features characteristic of excessive scarring. Application of slow-release prednisone, an inactive glucocorticoid, slowed the initial rate of wound closure but significantly reduced post-burn scarring via reductions in inflammation, myofibroblast generation, collagen production and scar stiffness. Conclusions: Skin 11ß-HSD1 expression is a key regulator of wound healing and scarring after burn injury. Application of an inactive glucocorticoid capable of activation by local 11ß-HSD1 in skin slows the initial rate of wound closure but significantlyimproves scar characteristics post burn injury.

5.
J Med Chem ; 65(19): 13328-13342, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36179320

RESUMO

SARS-CoV-2 is the causative agent behind the COVID-19 pandemic. The main protease (Mpro, 3CLpro) of SARS-CoV-2 is a key enzyme that processes polyproteins translated from the viral RNA. Mpro is therefore an attractive target for the design of inhibitors that block viral replication. We report the diastereomeric resolution of the previously designed SARS-CoV-2 Mpro α-ketoamide inhibitor 13b. The pure (S,S,S)-diastereomer, 13b-K, displays an IC50 of 120 nM against the Mpro and EC50 values of 0.8-3.4 µM for antiviral activity in different cell types. Crystal structures have been elucidated for the Mpro complexes with each of the major diastereomers, the active (S,S,S)-13b (13b-K), and the nearly inactive (R,S,S)-13b (13b-H); results for the latter reveal a novel binding mode. Pharmacokinetic studies show good levels of 13b-K after inhalative as well as after peroral administration. The active inhibitor (13b-K) is a promising candidate for further development as an antiviral treatment for COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Pandemias , Poliproteínas , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , RNA Viral , Proteínas não Estruturais Virais/metabolismo
6.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806338

RESUMO

Therapeutic glucocorticoids (GCs) are powerful anti-inflammatory tools in the management of chronic inflammatory diseases such as rheumatoid arthritis (RA). However, their actions on bone in this context are complex. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) is a mediator of the anti-inflammatory actions of therapeutic glucocorticoids (GCs) in vivo. In this study we delineate the role of 11ß-HSD1 in the effects of GC on bone during inflammatory polyarthritis. Its function was assessed in bone biopsies from patients with RA and osteoarthritis, and in primary osteoblasts and osteoclasts. Bone metabolism was assessed in the TNF-tg model of polyarthritis treated with oral GC (corticosterone), in animals with global (TNF-tg11ßKO), mesenchymal (including osteoblast) (TNF-tg11ßflx/tw2cre) and myeloid (including osteoclast) (TNF-tg11ßflx/LysMcre) deletion. Bone parameters were assessed by micro-CT, static histomorphometry and serum metabolism markers. We observed a marked increase in 11ß-HSD1 activity in bone in RA relative to osteoarthritis bone, whilst the pro-inflammatory cytokine TNFα upregulated 11ß-HSD1 within osteoblasts and osteoclasts. In osteoclasts, 11ß-HSD1 mediated the suppression of bone resorption by GCs. Whilst corticosterone prevented the inflammatory loss of trabecular bone in TNF-tg animals, counterparts with global deletion of 11ß-HSD1 were resistant to these protective actions, characterised by increased osteoclastic bone resorption. Targeted deletion of 11ß-HSD1 within osteoclasts and myeloid derived cells partially reproduced the GC resistant phenotype. These data reveal the critical role of 11ß-HSD1 within bone and osteoclasts in mediating the suppression of inflammatory bone loss in response to therapeutic GCs in chronic inflammatory disease.


Assuntos
Artrite Reumatoide , Reabsorção Óssea , Osteoartrite , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Artrite Reumatoide/metabolismo , Reabsorção Óssea/metabolismo , Corticosterona/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Inflamação/patologia , Osteoartrite/metabolismo , Osteoclastos/metabolismo
7.
FASEB J ; 36(5): e22310, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35394674

RESUMO

Wound healing is a complex process involving multiple independent and overlapping sequential physiological mechanisms. In addition to cutaneous injury, a severe burn stimulates physiological derangements that induce a systemic hypermetabolic response resulting in impaired wound healing. Topical application of the anti-androgen drug, flutamide accelerates cutaneous wound healing, whereas paradoxically systemic dihydrotestosterone (DHT) improves burn wound healing. We developed and characterized a PCL scaffold that is capable of controlled release of androgen (DHT) and anti-androgen (F) individually or together. This study aims to investigate whether local modification of androgen actions has an impact on burn injury wound healing. In a full-thickness burn wound healing, mouse model, DHT/F-scaffold showed a significantly faster wound healing compared with F-scaffold or DHT-scaffold. Histology analysis confirmed that DHT/F-scaffold exhibited higher re-epithelization, cell proliferation, angiogenesis, and collagen deposition. Dual release of DHT and F from PCL scaffolds promoted cell proliferation of human keratinocytes and alters the keratinocyte cell cycle. Lastly, no adverse effects on androgen-dependent organs, spleen and liver were observed. In conclusion, we demonstrated DHT plus F load PCL scaffolds accelerated burn wound healing when loading alone did not. These findings point to a complex role of androgens in burn wound healing and open novel therapeutic avenues for treating severe burn patients.


Assuntos
Queimaduras , Flutamida , Antagonistas de Androgênios/uso terapêutico , Androgênios/farmacologia , Animais , Queimaduras/tratamento farmacológico , Di-Hidrotestosterona/farmacologia , Flutamida/farmacologia , Flutamida/uso terapêutico , Humanos , Camundongos , Poliésteres , Alicerces Teciduais , Cicatrização
8.
J Clin Endocrinol Metab ; 107(7): 2026-2035, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35275196

RESUMO

CONTEXT: The causative link between circulating glucocorticoid excess and osteoporosis is well-established. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), which increases local cortisol production, is expressed in human osteoblasts and its activity increases with age. OBJECTIVE: We hypothesized that local 11ß-HSD1 might mediate an age-related decrease in bone formation and that selective 11ß-HSD1 inhibition may enhance bone formation. METHODS: A dual-center, phase II, randomized, double-blind, placebo-controlled trial of 90 days' treatment with AZD4017 (a selective 11ß-HSD1 inhibitor) was conducted in 55 postmenopausal women with osteopenia. Participants received 400 mg oral AZD4017 twice daily vs matched placebo over 90 days. The primary outcome measure was the impact on the bone formation marker osteocalcin. Secondary objectives included correlation with 11ß-HSD1 activity. RESULTS: At 90 days, osteocalcin levels did not differ between treatment groups: active (mean 22.3 [SD 8.6] ng/mL, n = 22) and placebo (21.7 [SD 9.2] ng/mL, n = 24), with a baseline-adjusted treatment effect of 0.95 (95% CI: -2.69, 4.60). The results from the urinary [THF + alloTHF]/THE ratio (index of 11ß-HSD1 activity) and the urinary cortisol/cortisone ratio (index of 11ß-HSD2 activity) confirmed a > 90% inhibition of 11ß-HSD1 but no change in activity of 11ß-HSD2. CONCLUSION: This trial demonstrates that AZD4017 selectively inhibits 11ß-HSD1 activity in vivo in a safe and reversible manner. Following 90 days of treatment, there is no effect on bone formation, indicating that the relative impairment of bone mineral density in postmenopausal women is not mediated by local intracellular production of cortisol under normal physiological concentrations.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Doenças Ósseas Metabólicas , Niacinamida , Piperidinas , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Doenças Ósseas Metabólicas/tratamento farmacológico , Remodelação Óssea , Feminino , Glucocorticoides , Humanos , Hidrocortisona , Niacinamida/análogos & derivados , Niacinamida/uso terapêutico , Osteocalcina , Piperidinas/uso terapêutico , Pós-Menopausa
9.
Oncogenesis ; 10(10): 68, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642317

RESUMO

CIC-DUX4 sarcoma (CDS) is a highly aggressive and metastatic small round type of predominantly pediatric sarcoma driven by a fusion oncoprotein comprising the transcriptional repressor Capicua (CIC) fused to the C-terminal transcriptional activation domain of DUX4. CDS rapidly develops resistance to chemotherapy, thus novel specific therapies are greatly needed. We demonstrate that CIC-DUX4 requires P300/CBP to induce histone H3 acetylation, activate its targets, and drive oncogenesis. We describe the synthetic route to a selective and highly potent P300/CBP inhibitor named iP300w and related stereoisomers, and find that iP300w efficiently suppresses CIC-DUX4 transcriptional activity and reverses CIC-DUX4 induced acetylation. iP300w is active at 100-fold lower concentrations than related stereoisomers or A-485. At low doses, iP300w shows specificity to CDS cancer cell lines, rapidly inducing cell cycle arrest and preventing growth of established CDS xenograft tumors when delivered in vivo. The effectiveness of iP300w to inactivate CIC-DUX4 highlights a promising therapeutic opportunity for CDS.

10.
Front Endocrinol (Lausanne) ; 12: 733611, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512556

RESUMO

The role of tissue specific metabolism of endogenous glucocorticoids (GCs) in the pathogenesis of human disease has been a field of intense interest over the last 20 years, fuelling clinical trials of metabolism inhibitors in the treatment of an array of metabolic diseases. Localised pre-receptor metabolism of endogenous and therapeutic GCs by the 11ß-hydroxysteroid dehydrogenase (11ß-HSD) enzymes (which interconvert endogenous GCs between their inactive and active forms) are increasingly recognised as being critical in mediating both their positive and negative actions on bone homeostasis. In this review we explore the roles of endogenous and therapeutic GC metabolism by the 11ß-HSD enzymes in the context of bone metabolism and bone cell function, and consider future strategies aimed at modulating this system in order to manage and treat various bone diseases.


Assuntos
Doenças Ósseas/etiologia , Osso e Ossos/metabolismo , Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/fisiologia , Animais , Desenvolvimento Ósseo/fisiologia , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Osso e Ossos/fisiologia , Glucocorticoides/fisiologia , Humanos
11.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360594

RESUMO

Glucocorticoids provide indispensable anti-inflammatory therapies. However, metabolic adverse effects including muscle wasting restrict their use. The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) modulates peripheral glucocorticoid responses through pre-receptor metabolism. This study investigates how 11ß-HSD1 influences skeletal muscle responses to glucocorticoid therapy for chronic inflammation. We assessed human skeletal muscle biopsies from patients with rheumatoid arthritis and osteoarthritis for 11ß-HSD1 activity ex vivo. Using the TNF-α-transgenic mouse model (TNF-tg) of chronic inflammation, we examined the effects of corticosterone treatment and 11ß-HSD1 global knock-out (11ßKO) on skeletal muscle, measuring anti-inflammatory gene expression, muscle weights, fiber size distribution, and catabolic pathways. Muscle 11ß-HSD1 activity was elevated in patients with rheumatoid arthritis and correlated with inflammation markers. In murine skeletal muscle, glucocorticoid administration suppressed IL6 expression in TNF-tg mice but not in TNF-tg11ßKO mice. TNF-tg mice exhibited reductions in muscle weight and fiber size with glucocorticoid therapy. In contrast, TNF-tg11ßKO mice were protected against glucocorticoid-induced muscle atrophy. Glucocorticoid-mediated activation of catabolic mediators (FoxO1, Trim63) was also diminished in TNF-tg11ßKO compared to TNF-tg mice. In summary, 11ß-HSD1 knock-out prevents muscle atrophy associated with glucocorticoid therapy in a model of chronic inflammation. Targeting 11ß-HSD1 may offer a strategy to refine the safety of glucocorticoids.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Artrite Reumatoide/tratamento farmacológico , Deleção de Genes , Glucocorticoides/efeitos adversos , Atrofia Muscular/prevenção & controle , Osteoartrite do Quadril/tratamento farmacológico , Animais , Artrite Reumatoide/patologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/genética , Atrofia Muscular/patologia , Osteoartrite do Quadril/patologia
12.
Burns Trauma ; 9: tkaa046, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33928173

RESUMO

Wound healing is a complex process involving four overlapping phases: haemostasis, inflammation, cell recruitment and matrix remodeling. In mouse models, surgical, pharmacological and genetic approaches targeting androgen actions in skin have shown that androgens increase interleukin-6 and tumor necrosis factor-α production and reduce wound re-epithelization and matrix deposition, retarding cutaneous wound healing. Similarly, clinical studies have shown that cutaneous wound healing is slower in men compared to women. However, in major burn injury, which triggers not only local wound-healing processes but also systemic hypermetabolism, the role of androgens is poorly understood. Recent studies have claimed that a synthetic androgen, oxandrolone, increases protein synthesis, improves lean body mass and shortens length of hospital stay. However, the possible mechanisms by which oxandrolone regulates major burn injury have not been reported. In this review, we summarize the current findings on the roles of androgens in cutaneous and major burn wound healing, as well as androgens as a potential therapeutic treatment option for patients with major burn injuries.

13.
Mol Metab ; 42: 101098, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045434

RESUMO

OBJECTIVE: Aging and chronic glucocorticoid excess share a number of critical features, including the development of central obesity, insulin resistance and osteoporosis. Previous studies have shown that skeletal glucocorticoid signalling increases with aging and that osteoblasts mediate the detrimental skeletal and metabolic effects of chronic glucocorticoid excess. Here, we investigated whether endogenous glucocorticoid action in the skeleton contributes to metabolic dysfunction during normal aging. METHODS: Mice lacking glucocorticoid signalling in osteoblasts and osteocytes (HSD2OB/OCY-tg mice) and their wild-type littermates were studied until 3, 6, 12 and 18 months of age. Body composition, adipose tissue morphology, skeletal gene expression and glucose/insulin tolerance were assessed at each timepoint. Leptin sensitivity was assessed by arcuate nucleus STAT3 phosphorylation and inhibition of feeding following leptin administration. Tissue-specific glucose uptake and adipose tissue oxygen consumption rate were also measured. RESULTS: As they aged, wild-type mice became obese and insulin-resistant. In contrast, HSD2OB/OCY-tg mice remained lean and insulin-sensitive during aging. Obesity in wild-type mice was due to leptin resistance, evidenced by an impaired ability of exogenous leptin to suppress food intake and phosphorylate hypothalamic STAT3, from 6 months of age onwards. In contrast, HSD2OB/OCY-tg mice remained leptin-sensitive throughout the study. Compared to HSD2OB/OCY-tg mice, leptin-resistant wild-type mice displayed attenuated sympathetic outflow, with reduced tyrosine hydroxylase expression in both the hypothalamus and thermogenic adipose tissues. Adipose tissue oxygen consumption rate declined progressively in aging wild-type mice but was maintained in HSD2OB/OCY-tg mice. At 18 months of age, adipose tissue glucose uptake was increased 3.7-fold in HSD2OB/OCY-tg mice, compared to wild-type mice. CONCLUSIONS: Skeletal glucocorticoid signalling is critical for the development of leptin resistance, obesity and insulin resistance during aging. These findings underscore the skeleton's importance in the regulation of body weight and implicate osteoblastic/osteocytic glucocorticoid signalling in the aetiology of aging-related obesity and metabolic disease.


Assuntos
Envelhecimento/metabolismo , Glucocorticoides/metabolismo , Leptina/metabolismo , Tecido Adiposo/metabolismo , Fatores Etários , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Composição Corporal , Peso Corporal/fisiologia , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Feminino , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Obesidade/metabolismo , Obesidade/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Termogênese
14.
Med J Aust ; 213(7): 316-320, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32906192

RESUMO

OBJECTIVE: To estimate the level of dispensing of oral corticosteroids (OCS) for managing asthma in Australia, with a particular focus on the cumulative dispensing of doses associated with long term toxicity (≥ 1000 mg prednisolone-equivalent). DESIGN: Retrospective cohort study; analysis of 10% random sample of Pharmaceutical Benefits Scheme (PBS) dispensing data. PARTICIPANTS, SETTING: People aged 12 years or more treated for asthma during 2014-2018, according to dispensing of controller inhaled corticosteroids (ICS). MAIN OUTCOME MEASURES: Number of people dispensed OCS for managing asthma during 2014-2018; proportion who were cumulatively dispensed at least 1000 mg prednisolone-equivalent. The secondary outcome was the number of people dispensed at least 1000 mg prednisolone-equivalent during 2018, stratified by inhaler controller dose and use. RESULTS: 124 011 people had been dispensed at least two prescriptions of ICS during 2014-2018 and met the study definition for asthma, of whom 64 112 (51.7%) had also been dispensed OCS, including 34 580 (27.9% of the asthma group) cumulatively dispensed 1000 mg prednisolone-equivalent or more. Of 138 073 people dispensed OCS at this level, 68 077 (49%) were patients with airway diseases. Dispensing of diabetes and osteoporosis medications was more common for people cumulatively dispensed 1000 mg prednisolone-equivalent or more. During 2018, 4633 people with asthma using high dose ICS controllers were dispensed 1000 mg prednisolone-equivalent or more, for 2316 of whom (50%) controller use was inadequate. CONCLUSIONS: Cumulative exposure to OCS in Australia reaches levels associated with toxicity in one-quarter of patients with asthma using ICS. Cumulative dispensing of potentially toxic OCS amounts often accompanies inadequate inhaler controller dispensing. Better approaches are needed to improve adherence to controller therapy, improve outcomes for people with asthma, and to minimise the use and toxicity of OCS.


Assuntos
Corticosteroides/administração & dosagem , Antiasmáticos/administração & dosagem , Asma/tratamento farmacológico , Prescrições de Medicamentos/estatística & dados numéricos , Administração Oral , Adolescente , Corticosteroides/toxicidade , Adulto , Antiasmáticos/toxicidade , Austrália , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
15.
Int J Mol Sci ; 21(17)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872240

RESUMO

Androgens have been known to inhibit cutaneous wound healing in men and male mice. However, in children with major burn injuries, a synthetic androgen was reported clinically to improve wound healing. The aim of this study is to investigate the role of dihydrotestosterone (DHT) as a new therapeutic approach in treating major burn injury. In the present study, mice received systemic androgen treatment post major burn injury. Wound healing rate and body weight were monitored over 21 days. The serum level of inflammatory cytokines/chemokines were measured using multiplex immunoassays. In addition, splenocyte enumeration was performed by flow cytometry. Healing phases of inflammation, re-epithelialization, cell proliferation and collagen deposition were also examined. In results, DHT treated mice lost less weight and displayed accelerated wound healing but has no impact on hypermetabolism. Mice, after burn injury, displayed acute systemic inflammatory responses over 21 days. DHT treatment shortened the systemic inflammatory response with reduced splenic weight and monocyte numbers on day 14 and 21. DHT treatment also reduced wound infiltrating macrophage numbers. In conclusion, DHT treatment facilitates local wound healing by accelerating the resolution of inflammation, but not through alterations of post-burn hypermetabolic response.


Assuntos
Androgênios/administração & dosagem , Queimaduras/tratamento farmacológico , Di-Hidrotestosterona/administração & dosagem , Cicatrização/efeitos dos fármacos , Androgênios/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Queimaduras/sangue , Queimaduras/imunologia , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Citocinas/sangue , Di-Hidrotestosterona/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Baço/efeitos dos fármacos , Baço/imunologia
16.
Nat Rev Rheumatol ; 16(3): 133-144, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32034322

RESUMO

Therapeutic glucocorticoids have been widely used in rheumatic diseases since they became available over 60 years ago. Despite the advent of more specific biologic therapies, a notable proportion of individuals with chronic rheumatic diseases continue to be treated with these drugs. Glucocorticoids are powerful, broad-spectrum anti-inflammatory agents, but their use is complicated by an equally broad range of adverse effects. The specific cellular mechanisms by which glucocorticoids have their therapeutic action have been difficult to identify, and attempts to develop more selective drugs on the basis of the action of glucocorticoids have proven difficult. The actions of glucocorticoids seem to be highly cell-type and context dependent. Despite emerging data on the effect of tissue-specific manipulation of glucocorticoid receptors in mouse models of inflammation, the cell types and intracellular targets of glucocorticoids in rheumatic diseases have not been fully identified. Although showing some signs of decline, the use of systemic glucocorticoids in rheumatology is likely to continue to be widespread, and careful consideration is required by rheumatologists to balance the beneficial effects and deleterious effects of these agents.


Assuntos
Glucocorticoides/uso terapêutico , Doenças Reumáticas/tratamento farmacológico , Animais , Humanos , Resultado do Tratamento
18.
Crit Care Med ; 46(12): e1128-e1135, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30222631

RESUMO

OBJECTIVES: Observational studies suggest an association between vitamin D deficiency and adverse outcomes of critical illness and identify it as a potential risk factor for the development of lung injury. To determine whether preoperative administration of oral high-dose cholecalciferol ameliorates early acute lung injury postoperatively in adults undergoing elective esophagectomy. DESIGN: A double-blind, randomized, placebo-controlled trial. SETTING: Three large U.K. university hospitals. PATIENTS: Seventy-nine adult patients undergoing elective esophagectomy were randomized. INTERVENTIONS: A single oral preoperative (3-14 d) dose of 7.5 mg (300,000 IU; 15 mL) cholecalciferol or matched placebo. MEASUREMENTS AND MAIN RESULTS: Primary outcome was change in extravascular lung water index at the end of esophagectomy. Secondary outcomes included PaO2:FIO2 ratio, development of lung injury, ventilator and organ-failure free days, 28 and 90 day survival, safety of cholecalciferol supplementation, plasma vitamin D status (25(OH)D, 1,25(OH)2D, and vitamin D-binding protein), pulmonary vascular permeability index, and extravascular lung water index day 1 postoperatively. An exploratory study measured biomarkers of alveolar-capillary inflammation and injury. Forty patients were randomized to cholecalciferol and 39 to placebo. There was no significant change in extravascular lung water index at the end of the operation between treatment groups (placebo median 1.0 [interquartile range, 0.4-1.8] vs cholecalciferol median 0.4 mL/kg [interquartile range, 0.4-1.2 mL/kg]; p = 0.059). Median pulmonary vascular permeability index values were significantly lower in the cholecalciferol treatment group (placebo 0.4 [interquartile range, 0-0.7] vs cholecalciferol 0.1 [interquartile range, -0.15 to -0.35]; p = 0.027). Cholecalciferol treatment effectively increased 25(OH)D concentrations, but surgery resulted in a decrease in 25(OH)D concentrations at day 3 in both arms. There was no difference in clinical outcomes. CONCLUSIONS: High-dose preoperative treatment with oral cholecalciferol was effective at increasing 25(OH)D concentrations and reduced changes in postoperative pulmonary vascular permeability index, but not extravascular lung water index.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Colecalciferol/administração & dosagem , Esofagectomia/métodos , Idoso , Biomarcadores , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Método Duplo-Cego , Água Extravascular Pulmonar/metabolismo , Feminino , Hospitais Universitários , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória , Reino Unido , Vitamina D/sangue
20.
Endocr Rev ; 39(5): 519-548, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29905835

RESUMO

Osteoporosis associated with long-term glucocorticoid therapy remains a common and serious bone disease. Additionally, in recent years it has become clear that more subtle states of endogenous glucocorticoid excess may have a major impact on bone health. Adverse effects can be seen with mild systemic glucocorticoid excess, but there is also evidence of tissue-specific regulation of glucocorticoid action within bone as a mechanism of disease. This review article examines (1) the role of endogenous glucocorticoids in normal bone physiology, (2) the skeletal effects of endogenous glucocorticoid excess in the context of endocrine conditions such as Cushing disease/syndrome and autonomous cortisol secretion (subclinical Cushing syndrome), and (3) the actions of therapeutic (exogenous) glucocorticoids on bone. We review the extent to which the effect of glucocorticoids on bone is influenced by variations in tissue metabolizing enzymes and glucocorticoid receptor expression and sensitivity. We consider how the effects of therapeutic glucocorticoids on bone are complicated by the effects of the underlying inflammatory disease being treated. We also examine the impact that glucocorticoid replacement regimens have on bone in the context of primary and secondary adrenal insufficiency. We conclude that even subtle excess of endogenous or moderate doses of therapeutic glucocorticoids are detrimental to bone. However, in patients with inflammatory disorders there is a complex interplay between glucocorticoid treatment and underlying inflammation, with the underlying condition frequently representing the major component underpinning bone damage.


Assuntos
Densidade Óssea/efeitos dos fármacos , Síndrome de Cushing/tratamento farmacológico , Glucocorticoides/efeitos adversos , Terapia de Reposição Hormonal/efeitos adversos , Osteoporose/induzido quimicamente , Hipersecreção Hipofisária de ACTH/tratamento farmacológico , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...