Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 15(21): 8069-80, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23503809

RESUMO

A protocol for the ab initio crystal structure determination of powdered solids at natural isotopic abundance by combining solid-state NMR spectroscopy, crystal structure prediction, and DFT chemical shift calculations was evaluated to determine the crystal structures of four small drug molecules: cocaine, flutamide, flufenamic acid, and theophylline. For cocaine, flutamide and flufenamic acid, we find that the assigned (1)H isotropic chemical shifts provide sufficient discrimination to determine the correct structures from a set of predicted structures using the root-mean-square deviation (rmsd) between experimentally determined and calculated chemical shifts. In most cases unassigned shifts could not be used to determine the structures. This method requires no prior knowledge of the crystal structure, and was used to determine the correct crystal structure to within an atomic rmsd of less than 0.12 Å with respect to the known reference structure. For theophylline, the NMR spectra are too simple to allow for unambiguous structure selection.


Assuntos
Cocaína/química , Ácido Flufenâmico/química , Flutamida/química , Espectroscopia de Ressonância Magnética/métodos , Teofilina/química , Cristalografia/métodos , Modelos Moleculares , Pós , Teoria Quântica
2.
Acta Crystallogr B ; 65(Pt 2): 107-25, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19299868

RESUMO

We report on the organization and outcome of the fourth blind test of crystal structure prediction, an international collaborative project organized to evaluate the present state in computational methods of predicting the crystal structures of small organic molecules. There were 14 research groups which took part, using a variety of methods to generate and rank the most likely crystal structures for four target systems: three single-component crystal structures and a 1:1 cocrystal. Participants were challenged to predict the crystal structures of the four systems, given only their molecular diagrams, while the recently determined but as-yet unpublished crystal structures were withheld by an independent referee. Three predictions were allowed for each system. The results demonstrate a dramatic improvement in rates of success over previous blind tests; in total, there were 13 successful predictions and, for each of the four targets, at least two groups correctly predicted the observed crystal structure. The successes include one participating group who correctly predicted all four crystal structures as their first ranked choice, albeit at a considerable computational expense. The results reflect important improvements in modelling methods and suggest that, at least for the small and fairly rigid types of molecules included in this blind test, such calculations can be constructively applied to help understand crystallization and polymorphism of organic molecules.


Assuntos
Acroleína/química , Benzotiazóis/química , Simulação por Computador , Fluorbenzenos/química , Tionas/química , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Teoria Quântica
3.
J Chem Theory Comput ; 4(10): 1795-805, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26620182

RESUMO

The computer-generation of the crystal structures of the α-amino acid valine is used as a challenging test of lattice energy modeling methods for crystal structure prediction of flexible polar organic molecules and, specifically, to examine the importance of molecular polarization on calculated relative energies. Total calculated crystal energies, which combine atom-atom model potential calculations of intermolecular interactions with density functional theory intramolecular energies, do not effectively distinguish the real (known) crystal structures from the rest of the low energy computer-generated alternatives when the molecular electrostatic models are derived from isolated molecule calculations. However, we find that introducing a simple model for the bulk crystalline environment when calculating the molecular energy and electron density distribution leads to important changes in relative total crystal energies and correctly distinguishes the observed crystal structures from the set of computer-generated possibilities. This study highlights the importance of polarization of the molecular charge distribution in crystal structure prediction calculations, especially for polar flexible molecules, and suggests a computationally inexpensive approach to include its effect in lattice energy calculations.

4.
Langmuir ; 20(10): 3984-94, 2004 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-15969389

RESUMO

Atomistic computer simulation techniques were employed to investigate the interaction of a selection of organic surfactant molecules with a range of scheelite surfaces. The adsorbates coordinate mainly to the surfaces through interaction between their oxygen (or nitrogen) atoms to surface calcium ions, followed by hydrogen-bonded interactions to surface oxygen ions. Bridging between two surface calcium ions is the preferred mode of adsorption, but a bidentate interaction by two adsorbate oxygen ions to the same surface calcium ion is also a stable configuration and multiple interactions between surfaces and adsorbate molecules lead to the largest adsorption energies. All adsorbates containing carbonyl and hydroxy groups interact strongly with the surfaces, releasing energies between approximately 80 and 170 kJ mol(-1), but methylamine containing only the -NH2 functional group adsorbs to the surfaces to a much lesser extent (55-86 kJ mol(-1)). Both hydroxymethanamide and hydroxyethanal adsorb to some surfaces in an eclipsed conformation, which is a requisite for these functional groups. Sorption of the organic material by replacement of preadsorbed water at different surface features is calculated to be mainly exothermic for methanoic acid, but less so for the hydroxymethanamide and hydroxyethanal molecules, whereas methylamine would not replace preadsorbed water at the scheelite surfaces. The efficacy of the surfactant molecules is hence calculated to be carboxylic acids > alkyl hydroxamates > hydroxyaldehydes > alkylamines. The results from this study suggest that computer simulations may provide a route to the identification or even design of particular organic surfactants for use in mineral separation processes.

5.
Chem Commun (Camb) ; (14): 1502-3, 2002 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-12189864

RESUMO

Computer simulations of the co-adsorption of water and methanoic acid at a range of surface features of calcite and fluorite minerals have shown that the relative adsorption energies for the two minerals are reversed when solvent effects are included in the calculations, a finding which is important in the search for effective surfactant reagents in flotation techniques, which are used extensively in the mining and pharmaceutical industries and in environmental remediation processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...