Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Disabil Rehabil Assist Technol ; 17(7): 815-827, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-32924672

RESUMO

PURPOSE: To enable power wheelchair users with limited mobility to safely and independently charge their wheelchairs. METHODS: Stakeholders of multiple roles - including potential users, their caregivers, and clinicians with specifically relevant expertise - were engaged in a user-centred design process. Initial informal interviews, focus groups, online surveys, prototype demonstrations, semi-structured interviews, and expert reviews were utilized to guide development and iteratively evaluate prototypes. RESULTS: The resulting wireless charging system enables independent charging while also significantly increasing capacity and charging speed. Autonomous positioning and remote control features further address the particular use cases of the target population, and vital features of existing power wheelchairs are retained according to stakeholder input. Pertinent topics emerging from stakeholder input are discussed. CONCLUSIONS: Careful application of user-centred design principles is essential to the successful development of usable assistive technology devices, particularly for target populations with complex disabilities. The diverse perspectives of all relevant stakeholders must be considered and synthesized to produce a practical and usable solution.Implications for rehabilitationBattery charge is a constant and critical concern for power wheelchair users.Many power wheelchair users cannot independently use and monitor existing chargers.A wireless wheelchair charging system was developed to alleviate this issue.Sustained user engagement is crucial in the effective development of such assistive technology.


Assuntos
Pessoas com Deficiência , Tecnologia Assistiva , Cadeiras de Rodas , Desenho de Equipamento , Humanos , Inquéritos e Questionários
2.
Artigo em Inglês | MEDLINE | ID: mdl-35002012

RESUMO

Accurate quantification of the partitioning of evapotranspiration (ET) into transpiration and evaporation fluxes is necessary to understanding ecosystem interactions among carbon, water, and energy flux components. ET partitioning can also support the description of atmosphere and land interactions and provide unique insights into vegetation water status. Previous studies have identified leaf area index (LAI) estimation as a key descriptor of biomass conditions needed for the estimation of transpiration and evaporation. LAI estimation in clumped vegetation systems, such as vineyards and orchards, has proven challenging and is strongly related to crop phenological status and canopy management. In this study, a feature extraction model based on previous research was built to generate a total of 202 preliminary variables at a 3.6-by-3.6-meter-grid scale based on submeter-resolution information from a small Unmanned Aerial Vehicle (sUAV) in four commercial vineyards across California. Using these variables, a machine learning model called eXtreme Gradient Boosting (XGBoost) was successfully built for LAI estimation. The XGBoost built-in function requires only six variables relating to vegetation indices and temperature to produce high-accuracy LAI estimation for the vineyard. Using the six-variable XGBoost-based LAI map, two versions of the Two-Source Energy Balance (TSEB) model, TSEB-PT and TSEB-2T were used for energy balance and ET partitioning. Comparing these results with the Eddy-Covariance (EC) tower data, showed that TSEB-PT outperforms TSEB-2T on the estimation of sensible heat flux (within 13% relative error) and surface heat flux (within 34% relative error), while TSEB-2T outperforms TSEB-PT on the estimation of net radiation (within 14% relative error) and latent heat flux (within 2% relative error). For the mature vineyard (north block), TSEB-2T performs better than TSEB-PT in partitioning the canopy latent heat flux with 6.8% relative error and soil latent heat flux with 21.7% relative error; however, for the younger vineyard (south block), TSEB-PT performs better than TSEB-2T in partitioning the canopy latent heat flux with 11.7% relative error and soil latent heat flux with 39.3% relative error.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35002013

RESUMO

sUAS (small-Unmanned Aircraft System) and advanced surface energy balance models allow detailed assessment and monitoring (at plant scale) of different (agricultural, urban, and natural) environments. Significant progress has been made in the understanding and modeling of atmosphere-plant-soil interactions and numerical quantification of the internal processes at plant scale. Similarly, progress has been made in ground truth information comparison and validation models. An example of this progress is the application of sUAS information using the Two-Source Surface Energy Balance (TSEB) model in commercial vineyards by the Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment - GRAPEX Project in California. With advances in frequent sUAS data collection for larger areas, sUAS information processing becomes computationally expensive on local computers. Additionally, fragmentation of different models and tools necessary to process the data and validate the results is a limiting factor. For example, in the referred GRAPEX project, commercial software (ArcGIS and MS Excel) and Python and Matlab code are needed to complete the analysis. There is a need to assess and integrate research conducted with sUAS and surface energy balance models in a sharing platform to be easily migrated to high performance computing (HPC) resources. This research, sponsored by the National Science Foundation FAIR Cyber Training Fellowships, is integrating disparate software and code under a unified language (Python). The Python code for estimating the surface energy fluxes using TSEB2T model as well as the EC footprint analysis code for ground truth information comparison were hosted in myGeoHub site https://mygeohub.org/ to be reproducible and replicable.

4.
Remote Sens (Basel) ; 13(15): 2887, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35003785

RESUMO

Daily evapotranspiration (ET d ) plays a key role in irrigation water management and is particularly important in drought-stricken areas, such as California and high-value crops. Remote sensing allows for the cost-effective estimation of spatial evapotranspiration (ET), and the advent of small unmanned aerial systems (sUAS) technology has made it possible to estimate instantaneous high-resolution ET at the plant, row, and subfield scales. sUAS estimates ET using "instantaneous" remote sensing measurements with half-hourly/hourly forcing micrometeorological data, yielding hourly fluxes in W/m2 that are then translated to a daily scale (mm/day) under two assumptions: (a) relative rates, such as the ratios of ET-to-net radiation (R n ) or ET-to-solar radiation (R s ), are assumed to be constant rather than absolute, and (b) nighttime evaporation (E) and transpiration (T) contributions are negligible. While assumption (a) may be reasonable for unstressed, full cover crops (no exposed soil), the E and T rates may significantly vary over the course of the day for partially vegetated cover conditions due to diurnal variations of soil and crop temperatures and interactions between soil and vegetation elements in agricultural environments, such as vineyards and orchards. In this study, five existing extrapolation approaches that compute the daily ET from the "instantaneous" remotely sensed sUAS ET estimates and the eddy covariance (EC) flux tower measurements were evaluated under different weather, grapevine variety, and trellis designs. Per assumption (b), the nighttime ET contribution was ignored. Each extrapolation technique (evaporative fraction (EF), solar radiation (R s ), net radiation-to-solar radiation (R n /R s ) ratio, Gaussian (GA), and Sine) makes use of clear skies and quasi-sinusoidal diurnal variations of hourly ET and other meteorological parameters. The sUAS ET estimates and EC ET measurements were collected over multiple years and times from different vineyard sites in California as part of the USDA Agricultural Research Service Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX). Optical and thermal sUAS imagery data at 10 cm and 60 cm, respectively, were collected by the Utah State University AggieAir sUAS Program and used in the Two-Source Energy Balance (TSEB) model to estimate the instantaneous or hourly sUAS ET at overpass time. The hourly ET from the EC measurements was also used to validate the extrapolation techniques. Overall, the analysis using EC measurements indicates that the R s , EF, and GA approaches presented the best goodness-of-fit statistics for a window of time between 1030 and 1330 PST (Pacific Standard Time), with the R s approach yielding better agreement with the EC measurements. Similar results were found using TSEB and sUAS data. The 1030-1330 time window also provided the greatest agreement between the actual daily EC ET and the extrapolated TSEB daily ET, with the R s approach again yielding better agreement with the ground measurements. The expected accuracy of the upscaled TSEB daily ET estimates across all vineyard sites in California is below 0.5 mm/day, (EC extrapolation accuracy was found to be 0.34 mm/day), making the daily scale results from TSEB reliable and suitable for day-to-day water management applications.

5.
Remote Sens (Basel) ; 12(1): 50, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32355570

RESUMO

In recent years, the deployment of satellites and unmanned aerial vehicles (UAVs) has led to production of enormous amounts of data and to novel data processing and analysis techniques for monitoring crop conditions. One overlooked data source amid these efforts, however, is incorporation of 3D information derived from multi-spectral imagery and photogrammetry algorithms into crop monitoring algorithms. Few studies and algorithms have taken advantage of 3D UAV information in monitoring and assessment of plant conditions. In this study, different aspects of UAV point cloud information for enhancing remote sensing evapotranspiration (ET) models, particularly the Two-Source Energy Balance Model (TSEB), over a commercial vineyard located in California are presented. Toward this end, an innovative algorithm called Vegetation Structural-Spectral Information eXtraction Algorithm (VSSIXA) has been developed. This algorithm is able to accurately estimate height, volume, surface area, and projected surface area of the plant canopy solely based on point cloud information. In addition to biomass information, it can add multi-spectral UAV information to point clouds and provide spectral-structural canopy properties. The biomass information is used to assess its relationship with in situ Leaf Area Index (LAI), which is a crucial input for ET models. In addition, instead of using nominal field values of plant parameters, spatial information of fractional cover, canopy height, and canopy width are input to the TSEB model. Therefore, the two main objectives for incorporating point cloud information into remote sensing ET models for this study are to (1) evaluate the possible improvement in the estimation of LAI and biomass parameters from point cloud information in order to create robust LAI maps at the model resolution and (2) assess the sensitivity of the TSEB model to using average/nominal values versus spatially-distributed canopy fractional cover, height, and width information derived from point cloud data. The proposed algorithm is tested on imagery from the Utah State University AggieAir sUAS Program as part of the ARS-USDA GRAPEX Project (Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment) collected since 2014 over multiple vineyards located in California. The results indicate a robust relationship between in situ LAI measurements and estimated biomass parameters from the point cloud data, and improvement in the agreement between TSEB model output of ET with tower measurements when employing LAI and spatially-distributed canopy structure parameters derived from the point cloud data.

6.
Remote Sens (Basel) ; 12(3): 342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32355571

RESUMO

Evapotranspiration (ET) is a key variable for hydrology and irrigation water management, with significant importance in drought-stricken regions of the western US. This is particularly true for California, which grows much of the high-value perennial crops in the US. The advent of small Unmanned Aerial System (sUAS) with sensor technology similar to satellite platforms allows for the estimation of high-resolution ET at plant spacing scale for individual fields. However, while multiple efforts have been made to estimate ET from sUAS products, the sensitivity of ET models to different model grid size/resolution in complex canopies, such as vineyards, is still unknown. The variability of row spacing, canopy structure, and distance between fields makes this information necessary because additional complexity processing individual fields. Therefore, processing the entire image at a fixed resolution that is potentially larger than the plant-row separation is more efficient. From a computational perspective, there would be an advantage to running models at much coarser resolutions than the very fine native pixel size from sUAS imagery for operational applications. In this study, the Two-Source Energy Balance with a dual temperature (TSEB2T) model, which uses remotely sensed soil/substrate and canopy temperature from sUAS imagery, was used to estimate ET and identify the impact of spatial domain scale under different vine phenological conditions. The analysis relies upon high-resolution imagery collected during multiple years and times by the Utah State University AggieAir™ sUAS program over a commercial vineyard located near Lodi, California. This project is part of the USDA-Agricultural Research Service Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX). Original spectral and thermal imagery data from sUAS were at 10 cm and 60 cm per pixel, respectively, and multiple spatial domain scales (3.6, 7.2, 14.4, and 30 m) were evaluated and compared against eddy covariance (EC) measurements. Results indicated that the TSEB2T model is only slightly affected in the estimation of the net radiation (R n ) and the soil heat flux (G) at different spatial resolutions, while the sensible and latent heat fluxes (H and LE, respectively) are significantly affected by coarse grid sizes. The results indicated overestimation of H and underestimation of LE values, particularly at Landsat scale (30 m). This refers to the non-linear relationship between the land surface temperature (LST) and the normalized difference vegetation index (NDVI) at coarse model resolution. Another predominant reason for LE reduction in TSEB2T was the decrease in the aerodynamic resistance (R a ), which is a function of the friction velocity F*) that varies with mean canopy height and roughness length. While a small increase in grid size can be implemented, this increase should be limited to less than twice the smallest row spacing present in the sUAS imagery. The results also indicated that the mean LE at field scale is reduced by 10% to 20% at coarser resolutions, while the with-in field variability in LE values decreased significantly at the larger grid sizes and ranged between approximately 15% and 45%. This implies that, while the field-scale values of LE are fairly reliable at larger grid sizes, the with-in field variability limits its use for precision agriculture applications.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33758458

RESUMO

Estimation of surface energy fluxes using thermal remote sensing-based energy balance models (e.g., TSEB2T) involves the use of local micrometeorological input data of air temperature, wind speed, and incoming solar radiation, as well as vegetation cover and accurate land surface temperature (LST). The physically based Two-source Energy Balance with a Dual Temperature (TSEB2T) model separates soil and canopy temperature (Ts and Tc) to estimate surface energy fluxes including Rn, H, LE, and G. The estimation of Ts and Tc components for the TSEB2T model relies on the linear relationship between the composite land surface temperature and a vegetation index, namely NDVI. While canopy and soil temperatures are controlling variables in the TSEB2T model, they are influenced by the NDVI threshold values, where the uncertainties in their estimation can degrade the accuracy of surface energy flux estimation. Therefore, in this research effort, the effect of uncertainty in Ts and Tc estimation on surface energy fluxes will be examined by applying a Monte Carlo simulation on NDVI thresholds used to define canopy and soil temperatures. The spatial information used is available from multispectral imagery acquired by the AggieAir sUAS Program at Utah State University over vineyards near Lodi, California as part of the ARS-USDA Agricultural Research Service's Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project. The results indicate that LE is slightly sensitive to the uncertainty of NDVIs and NDVIc. The observed relative error of LE corresponding to NDVIs uncertainty was between -1% and 2%, while for NDVIc uncertainty, the relative error was between -2.2% and 1.2%. However, when the combined NDVIs and NDVIc uncertainties were used simultaneously, the domain of the observed relative error corresponding to the absolute values of |ΔLE| was between 0% and 4%.

8.
Artigo em Inglês | MEDLINE | ID: mdl-33758459

RESUMO

Validation of surface energy fluxes from remote sensing sources is performed using instantaneous field measurements obtained from eddy covariance (EC) instrumentation. An eddy covariance measurement is characterized by a footprint function / weighted area function that describes the mathematical relationship between the spatial distribution of surface flux sources and their corresponding magnitude. The orientation and size of each flux footprint / source area depends on the micro-meteorological conditions at the site as measured by the EC towers, including turbulence fluxes, friction velocity (ustar), and wind speed, all of which influence the dimensions and orientation of the footprint. The total statistical weight of the footprint is equal to unity. However, due to the large size of the source area / footprint, a statistical weight cutoff of less than one is considered, ranging between 0.85 and 0.95, to ensure that the footprint model is located inside the study area. This results in a degree of uncertainty when comparing the modeled fluxes from remote sensing energy models (i.e., TSEB2T) against the EC field measurements. In this research effort, the sensitivity of instantaneous and daily surface energy flux estimates to footprint weight cutoffs are evaluated using energy balance fluxes estimated with multispectral imagery acquired by AggieAir sUAS (small Unmanned Aerial Vehicle) over commercial vineyards near Lodi, California, as part of the ARS-USDA Agricultural Research Service's Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project. The instantaneous fluxes from the eddy covariance tower will be compared against instantaneous fluxes obtained from different TSEB2T aggregated footprint weights (cutoffs). The results indicate that the size, shape, and weight of pixels inside the footprint source area are strongly influenced by the cutoff values. Small cutoff values, such as 0.3 and 0.35, yielded high weights for pixels located within the footprint domain, while large cutoffs, such as 0.9 and 0.95, result in low weights. The results also indicate that the distribution of modelled LE values within the footprint source area are influenced by the cutoff values. A wide variation in LE was observed at high cutoffs, such as 0.90 and 0.95, while a low variation was observed at small cutoff values, such as 0.3. This happens due to the large number of pixel units involved inside the footprint domain when using high cutoff values, whereas a limited number of pixels are obtained at lower cutoff values.

9.
Proc SPIE Int Soc Opt Eng ; 114142020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33762795

RESUMO

Surface temperature is necessary for the estimation of energy fluxes and evapotranspiration from satellites and airborne data sources. For example, the Two-Source Energy Balance (TSEB) model uses thermal information to quantify canopy and soil temperatures as well as their respective energy balance components. While surface (also called kinematic) temperature is desirable for energy balance analysis, obtaining this temperature is not straightforward due to a lack of spatially estimated narrowband (sensor-specific) and broadband emissivities of vegetation and soil, further complicated by spectral characteristics of the UAV thermal camera. This study presents an effort to spatially model narrowband and broadband emissivities for a microbolometer thermal camera at UAV information resolution (~0.15 m) based on Landsat and NASA HyTES information using a deep learning (DL) model. The DL model is calibrated using equivalent optical Landsat / UAV spectral information to spatially estimate narrowband emissivity values of vegetation and soil in the 7-14-nm range at UAV resolution. The resulting DL narrowband emissivity values were then used to estimate broadband emissivity based on a developed narrowband-broadband emissivity relationship using the MODIS UCSB Emissivity Library database. The narrowband and broadband emissivities were incorporated into the TSEB model to determine their impact on the estimation of instantaneous energy balance components against ground measurements. The proposed effort was applied to information collected by the Utah State University AggieAir small Unmanned Aerial Systems (sUAS) Program as part of the ARS-USDA GRAPEX Project (Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment) over a vineyard located in Lodi, California. A comparison of resulting energy balance component estimates, with and without the inclusion of high-resolution narrowband and broadband emissivities, against eddy covariance (EC) measurements under different scenarios are presented and discussed.

10.
Artigo em Inglês | MEDLINE | ID: mdl-31359901

RESUMO

Tests of the most recent version of the two-source energy balance model have demonstrated that canopy and soil temperatures can be retrieved from high-resolution thermal imagery captured by an unmanned aerial vehicle (UAV). This work has assumed a linear relationship between vegetation indices (VIs) and radiometric temperature in a square grid (i.e., 3.6 m × 3.6 m) that is coarser than the resolution of the imagery acquired by the UAV. In this method, with visible, near infrared (VNIR), and thermal bands available at the same high-resolution, a linear fit can be obtained over the pixels located in a grid, where the x-axis is a vegetation index (VI) and the y-axis is radiometric temperature. Next, with an accurate VI threshold that separates soil and vegetation pixels from one another, the corresponding soil and vegetation temperatures can be extracted from the linear equation. Although this method is simpler than other approaches, such as TSEB with Priestly-Taylor (TSEB-PT), it could be sensitive to VIs and the parameters that affect VIs, such as shadows. Recent studies have revealed that, on average, the values of VIs, such as normalized difference vegetation index (NDVI) and leaf area index (LAI), that are located in sunlit areas are greater than those in shaded areas. This means that involving or compensating for shadows will affect the linear relationship parameters (slope and bias) between radiometric temperature and VI, as well as thresholds that separate soil and vegetation pixels. This study evaluates the impact of shadows on the retrieval of canopy and soil temperature data from four UAV images before and after applying shadow compensation techniques. The retrieved temperatures, using the TSEB-2T approach, both before and after shadow correction, are compared to the average temperature values for both soil and canopy in each grid. The imagery was acquired by the Utah State University AggieAir UAV system over a commercial vineyard located in California as part of the USDA Agricultural Research Service Grape Remote sensing Atmospheric Profile and Evapotranspiration Experiment (GRAPEX) Program during 2014 to 2016. The results of this study show when it is necessary to employ shadow compensation methods to retrieve vegetation and soil temperature directly.

11.
Artigo em Inglês | MEDLINE | ID: mdl-31359902

RESUMO

Theoretically, the appearance of shadows in aerial imagery is not desirable for researchers because it leads to errors in object classification and bias in the calculation of indices. In contrast, shadows contain useful geometrical information about the objects blocking the light. Several studies have focused on estimation of building heights in urban areas using the length of shadows. This type of information can be used to predict the population of a region, water demand, etc., in urban areas. With the emergence of unmanned aerial vehicles (UAVs) and the availability of high- to super-high-resolution imagery, the important questions relating to shadows have received more attention. Three-dimensional imagery generated using UAV-based photogrammetric techniques can be very useful, particularly in agricultural applications such as in the development of an empirical equation between biomass or yield and the geometrical information of canopies or crops. However, evaluating the accuracy of the canopy or crop height requires labor-intensive efforts. In contrast, the geometrical relationship between the length of the shadows and the crop or canopy height can be inversely solved using the shadow length measured. In this study, object heights retrieved from UAV point clouds are validated using the geometrical shadow information retrieved from three sets of high-resolution imagery captured by Utah State University's AggieAir UAV system. These flights were conducted in 2014 and 2015 over a commercial vineyard located in California for the USDA Agricultural Research Service Grape Remote sensing Atmospheric Profile and Evapotranspiration Experiment (GRAPEX) Program. The results showed that, although this approach could be computationally expensive, it is faster than fieldwork and does not require an expensive and accurate instrument such as a real-time kinematic (RTK) GPS.

12.
Artigo em Inglês | MEDLINE | ID: mdl-31359903

RESUMO

Microbolometer thermal cameras in UAVs and manned aircraft allow for the acquisition of high-resolution temperature data, which, along with optical reflectance, contributes to monitoring and modeling of agricultural and natural environments. Furthermore, these temperature measurements have facilitated the development of advanced models of crop water stress and evapotranspiration in precision agriculture and heat fluxes exchanges in small river streams and corridors. Microbolometer cameras capture thermal information at blackbody or radiometric settings (narrowband emissivity equates to unity). While it is customary that the modeler uses assumed emissivity values (e.g. 0.99-0.96 for agricultural and environmental settings); some applications (e.g. Vegetation Health Index), and complex models such as energy balance-based models (e.g. evapotranspiration) could benefit from spatial estimates of surface emissivity for true or kinetic temperature mapping. In that regard, this work presents an analysis of the spectral characteristics of a microbolometer camera with regard to emissivity, along with a methodology to infer thermal emissivity spatially based on the spectral characteristics of the microbolometer camera. For this work, the MODIS UCBS Emissivity Library, NASA HyTES hyperspectral emissivity, Landsat, and Utah State University AggieAir UAV surface reflectance products are employed. The methodology is applied to a commercial vineyard agricultural setting located in Lodi, California, where HyTES, Landsat, and AggieAir UAV spatial data were collected in the 2014 growing season. Assessment of the microbolometer spectral response with regards to emissivity and emissivity modeling performance for the area of study are presented and discussed.

13.
Proc SPIE Int Soc Opt Eng ; 106642018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31086430

RESUMO

In high-resolution imagery, shadows may cause problems in object segmentation and recognition due to their low reflectance. For instance, the spectral reflectance of shadows and water are similar, particularly in the visible band. In precision agriculture, the vegetation condition in terms of plant water use, plant water stress, and chlorophyll content can be estimated using vegetation indices. Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI) and Enhanced Vegetation Index (EVI) are widely used vegetation indices for characterizing the condition of the vegetation. In addition, many soil indices have been developed for describing soil characteristics, such as Soil-Adjusted Vegetation Index (SAVI). However, shadows can have an influence on the performance of these vegetation and soil indices.Moreover, enhancing spatial resolution heightens the impact of shadows in the imagery. In this study, the behavior of vegetation and soil indices are evaluated using four sets of high-resolution imagery captured by the Utah State University AggieAir unmanned aerial vehicle (UAV) system. These indices were obtained from flights conducted in 2014, 2015, and 2016 over a commercial vineyard located in California for the USDA Agricultural Research Service Grape Remote sensing Atmospheric Profile and Evapotranspiration Experiment (GRAPEX) Program. Different shadow restoration methods are used to alleviate the impact of shadows in information products that might be developed from the high-resolution imagery. The histogram pattern of vegetation and soil indices before and after shadow compensation, are compared using sanalysi of variance (ANOVA). The results of this study indicate how shadows can affect the vegetation/soil indices and whether shadow compensation methods are able to remove the statistical difference between sunlit and shadowed vegetation/soil indices.

14.
Proc SPIE Int Soc Opt Eng ; 106642018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31024191

RESUMO

With the increasing availability of thermal proximity sensors, UAV-borne cameras, and eddy covariance radiometers there may be an assumption that information produced by these sensors is interchangeable or compatible. This assumption is often held for estimation of agricultural parameters such as canopy and soil temperature, energy balance components, and evapotranspiration. Nevertheless, environmental conditions, calibration, and ground settings may affect the relationship between measurements from each of these thermal sensors. This work presents a comparison between proximity infrared radiometer (IRT) sensors, microbolometer thermal cameras used in UAVs, and thermal radiometers used in eddy covariance towers in an agricultural setting. The information was collected in the 2015 and 2016 irrigation seasons at a commercial vineyard located in California for the USDA Agricultural Research Service Grape Remote Sensing Atmospheric Profile and Evapotranspiration Experiment (GRAPEX) Program. Information was captured at different times during diurnal cycles, and IRT and radiometer footprint areas were calculated for comparison with UAV thermal raster information. Issues such as sensor accuracy, the location of IRT sensors, diurnal temperature changes, and surface characterizations are presented.

15.
Irrig Sci ; 1: 1-23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31031514

RESUMO

Significant efforts have been made recently in the application of high-resolution remote sensing imagery (i.e., sub-meter) captured by unmanned aerial vehicles (UAVs) for precision agricultural applications for high-value crops such as wine grapes. However, at such high resolution, shadows will appear in the optical imagery effectively reducing the reflectance and emission signal received by imaging sensors. To date, research that evaluates procedures to identify the occurrence of shadows in imagery produced by UAVs is limited. In this study, the performance of four different shadow detection methods used in satellite imagery was evaluated for high-resolution UAV imagery collected over a California vineyard during the Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) field campaigns. The performance of the shadow detection methods was compared and impacts of shadowed areas on the normalized difference vegetation index (NDVI) and estimated evapotranspiration (ET) using the Two-Source Energy Balance (TSEB) model are presented. The results indicated that two of the shadow detection methods, the supervised classification and index-based methods, had better performance than two other methods. Furthermore, assessment of shadowed pixels in the vine canopy led to significant differences in the calculated NDVI and ET in areas affected by shadows in the high-resolution imagery. Shadows are shown to have the greatest impact on modeled soil heat flux, while net radiation and sensible heat flux are less affected. Shadows also have an impact on the modeled Bowen ratio (ratio of sensible to latent heat) which can be used as an indicator of vine stress level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...