Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Schizophr Bull ; 49(3): 669-678, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772948

RESUMO

BACKGROUND AND HYPOTHESIS: We used the uniquely high combined spatial and temporal resolution of magnetoencephalography to characterize working memory (WM)-related modulation of beta band activity in neuroleptic-free patients with schizophrenia in comparison to a large sample of performance-matched healthy controls. We also tested for effects of antipsychotic medication on identified differences in these same patients. STUDY DESIGN: Inpatients with schizophrenia (n = 21) or psychotic disorder not otherwise specified (n = 4) completed N-back and control tasks during magnetoencephalography while on placebo and during antipsychotic medication treatment, in a blinded, randomized, counterbalanced manner. Healthy, performance-matched controls (N = 100) completed the same tasks. WM-related neural activation was estimated as beta band (14-30 Hz) desynchronization throughout the brain in successive 400 ms time windows. Voxel-wise statistical comparisons were performed between controls and patients while off-medication at each time window. Significant clusters resulting from this between-groups analysis were then used as regions-of-interest, the activations of which were compared between on- and off-medication conditions in patients. STUDY RESULTS: Controls showed beta-band desynchronization (activation) of a fronto-parietal network immediately preceding correct button press responses-the time associated with WM updating and task execution. Altered activation in medication-free patients occurred largely during this time, in prefrontal, parietal, and visual cortices. Medication altered patients' neural responses such that the activation time courses in these regions-of-interest more closely resembled those of controls. CONCLUSIONS: These findings demonstrate that WM-related beta band alterations in schizophrenia are time-specific and associated with neural systems targeted by antipsychotic medications. Future studies may investigate this association by examining its potential neurochemical basis.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/complicações , Magnetoencefalografia , Memória de Curto Prazo/fisiologia , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Mapeamento Encefálico
2.
Cereb Cortex ; 29(11): 4654-4661, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30668668

RESUMO

A single-nucleotide polymorphism in the promoter region of the Matrix Metalloproteinase-9 (MMP9) gene, rs3918242, has been shown to affect MMP9 expression in macrophages and was associated with schizophrenia by two independent groups. However, rs3918242's effects on MMP9 expression were not replicable in cell lines or brain tissue. Additionally, publically available data indicate that rs3918242 genotype is related not to MMP9 expression, but rather to expression of SLC12A5, a nearby gene coding for a K+/Cl- cotransporter, whose expression has also been related to schizophrenia. Here, we studied brain structure and function in healthy participants stratified by rs3918242 genotype using structural MRI (N = 298), functional MRI during an N-back working memory task (N = 554), and magnetoencephalography (MEG) during the same task (N = 190). We found rs3918242 was associated with gray matter volume (GMV) in the insula and dorsolateral prefrontal cortex bilaterally, closely replicated in discovery and replication samples; and with inferior parietal lobule (IPL) GMV when the samples were meta-analytically combined. Additionally, using both fMRI and MEG, rs3918242 was associated with right IPL working memory-related activation, replicated in two cohorts and across imaging modalities. These convergent results provide further impetus for examinations of the relationship of SLC12A5 with brain structure and function in neuropsychiatric disease.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Expressão Gênica , Simportadores/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Memória de Curto Prazo/fisiologia , Polimorfismo de Nucleotídeo Único , Simportadores/genética
3.
Hum Brain Mapp ; 40(6): 1774-1785, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30556224

RESUMO

In human electrophysiology research, the high gamma part of the power spectrum (~>60 Hz) is a relatively new area of investigation. Despite a low signal-to-noise ratio, evidence exists that it contains significant information about activity in local cortical networks. Here, using magnetoencephalography (MEG), we found high gamma activity when comparing data from an n-back working memory task to resting data in a large sample of normal volunteers. Initial analysis of power spectra from 0-back, 2-back, and rest trials showed three frequency bands exhibiting task-related differences: alpha, beta, and high gamma. Unlike alpha and beta, the high gamma spectrum was broad, without a peak at a single frequency. In addition, power in high gamma was highest for the 2-back and lowest during rest, while the opposite pattern occurred in the other bands. Beamformer source localization of each of the three frequency bands revealed a distinct set of sources for high gamma. These included several regions of prefrontal cortex that exhibited greater power when both n-back conditions were compared to rest. A subset of these regions had more power when the 2-back was compared to 0-back, which indicates a role in working memory performance. Our results show that high gamma will be important for understanding cortical processing during cognitive and other tasks. Furthermore, data from human intracortical recordings suggest that high gamma is the aggregate of spiking in local cortical networks, which implies that MEG could serve to bridge experimental modalities by noninvasively observing task-related modulation of spiking rates.


Assuntos
Ritmo Gama/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Adulto , Feminino , Humanos , Magnetoencefalografia , Masculino , Testes Neuropsicológicos , Adulto Jovem
4.
Sci Rep ; 8(1): 6991, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725028

RESUMO

Top-down modulation of sensory processing is a critical neural mechanism subserving numerous important cognitive roles, one of which may be to inform lower-order sensory systems of the current 'task at hand' by conveying behavioral context to these systems. Accumulating evidence indicates that top-down cortical influences are carried by directed interareal synchronization of oscillatory neuronal populations, with recent results pointing to beta-frequency oscillations as particularly important for top-down processing. However, it remains to be determined if top-down beta-frequency oscillations indeed convey behavioral context. We measured spectral Granger Causality (sGC) using local field potentials recorded from microelectrodes chronically implanted in visual areas V1/V2, V4, and TEO of two rhesus macaque monkeys, and applied multivariate pattern analysis to the spatial patterns of top-down sGC. We decoded behavioral context by discriminating patterns of top-down (V4/TEO-to-V1/V2) beta-peak sGC for two different task rules governing correct responses to identical visual stimuli. The results indicate that top-down directed influences are carried to visual cortex by beta oscillations, and differentiate task demands even before visual stimulus processing. They suggest that top-down beta-frequency oscillatory processes coordinate processing of sensory information by conveying global knowledge states to early levels of the sensory cortical hierarchy independently of bottom-up stimulus-driven processing.


Assuntos
Comportamento Animal , Ritmo beta , Córtex Visual/fisiologia , Percepção Visual , Animais , Atenção , Macaca mulatta , Desempenho Psicomotor
5.
Elife ; 62017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28555565

RESUMO

Anxiety disorders affect approximately 1 in 5 (18%) Americans within a given 1 year period, placing a substantial burden on the national health care system. Therefore, there is a critical need to understand the neural mechanisms mediating anxiety symptoms. We used unbiased, multimodal, data-driven, whole-brain measures of neural activity (magnetoencephalography) and connectivity (fMRI) to identify the regions of the brain that contribute most prominently to sustained anxiety. We report that a single brain region, the intraparietal sulcus (IPS), shows both elevated neural activity and global brain connectivity during threat. The IPS plays a key role in attention orienting and may contribute to the hypervigilance that is a common symptom of pathological anxiety. Hyperactivation of this region during elevated state anxiety may account for the paradoxical facilitation of performance on tasks that require an external focus of attention, and impairment of performance on tasks that require an internal focus of attention.


Assuntos
Transtornos de Ansiedade/fisiopatologia , Excitabilidade Cortical , Lobo Parietal/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Adulto Jovem
6.
Hum Brain Mapp ; 38(2): 779-791, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27770478

RESUMO

Recently, independent components analysis (ICA) of resting state magnetoencephalography (MEG) recordings has revealed resting state networks (RSNs) that exhibit fluctuations of band-limited power envelopes. Most of the work in this area has concentrated on networks derived from the power envelope of beta bandpass-filtered data. Although research has demonstrated that most networks show maximal correlation in the beta band, little is known about how spatial patterns of correlations may differ across frequencies. This study analyzed MEG data from 18 healthy subjects to determine if the spatial patterns of RSNs differed between delta, theta, alpha, beta, gamma, and high gamma frequency bands. To validate our method, we focused on the sensorimotor network, which is well-characterized and robust in both MEG and functional magnetic resonance imaging (fMRI) resting state data. Synthetic aperture magnetometry (SAM) was used to project signals into anatomical source space separately in each band before a group temporal ICA was performed over all subjects and bands. This method preserved the inherent correlation structure of the data and reflected connectivity derived from single-band ICA, but also allowed identification of spatial spectral modes that are consistent across subjects. The implications of these results on our understanding of sensorimotor function are discussed, as are the potential applications of this technique. Hum Brain Mapp 38:779-791, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Magnetoencefalografia , Rede Nervosa/fisiologia , Descanso , Adulto , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Oxigênio/sangue , Análise de Componente Principal
7.
J Clin Neurophysiol ; 33(5): 414-420, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27760068

RESUMO

PURPOSE: To describe and optimize an automated beamforming technique followed by identification of locations with excess kurtosis (g2) for efficient detection and localization of interictal spikes in patients with medically refractory epilepsy. METHODS: Synthetic aperture magnetometry with g2 averaged over a sliding time window (SAMepi) was performed in seven patients with focal epilepsy and five healthy volunteers. The effect of varied window lengths on detection of spiking activity was evaluated. RESULTS: Sliding window lengths of 0.5 to 10 seconds performed similarly, with 0.5- and 1-second windows detecting spiking activity in 1 of the 3 virtual sensor locations with highest kurtosis. These locations were concordant with the region of eventual surgical resection in these seven patients who remained seizure-free at 1 year. Average g2 values increased with increasing sliding window length in all subjects. In healthy volunteers, kurtosis values stabilized in data sets longer than 2 minutes. CONCLUSIONS: SAMepi using g2 averaged over 1-second sliding time windows in data sets of at least 2 minutes of duration reliably identified interictal spiking and the presumed seizure focus in these seven patients. Screening the five locations with highest kurtosis values for spiking activity is an efficient and accurate technique for localizing interictal activity using magnetoencephalography. SIGNIFICANCE: SAMepi should be applied using the parameter values and procedure described for optimal detection and localization of interictal spikes. Use of this screening procedure could significantly improve the efficiency of magnetoencephalography analysis if clinically validated.


Assuntos
Ondas Encefálicas/fisiologia , Epilepsia Resistente a Medicamentos/diagnóstico , Processamento Eletrônico de Dados , Magnetoencefalografia , Adolescente , Pré-Escolar , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Gravação em Vídeo , Adulto Jovem
8.
Psychiatry Res Neuroimaging ; 254: 56-66, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27362845

RESUMO

Functional neuroimaging techniques including magnetoencephalography (MEG) have demonstrated that the brain is organized into networks displaying correlated activity. Group connectivity differences between healthy controls and participants with major depressive disorder (MDD) can be detected using temporal independent components analysis (ICA) on beta-bandpass filtered Hilbert envelope MEG data. However, the response of these networks to treatment is unknown. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects. We obtained MEG recordings before and after open-label infusion of 0.5mg/kg ketamine in MDD subjects (N=13) and examined networks previously shown to differ between healthy individuals and those with MDD. Connectivity between the amygdala and an insulo-temporal component decreased post-ketamine in MDD subjects towards that observed in control subjects at baseline. Decreased baseline connectivity of the subgenual anterior cingulate cortex (sgACC) with a bilateral precentral network had previously been observed in MDD compared to healthy controls, and the change in connectivity post-ketamine was proportional to the change in sgACC glucose metabolism in a subset (N=8) of subjects receiving [11F]FDG-PET imaging. Ketamine appeared to reduce connectivity, regardless of whether connectivity was abnormally high or low compared to controls at baseline. These preliminary findings suggest that sgACC connectivity may be directly related to glutamate levels.


Assuntos
Transtorno Depressivo Maior , Antagonistas de Aminoácidos Excitatórios/farmacologia , Neuroimagem Funcional/métodos , Giro do Cíngulo , Ketamina/farmacologia , Magnetoencefalografia/métodos , Rede Nervosa , Adulto , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Humanos , Ketamina/administração & dosagem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Tomografia por Emissão de Pósitrons
9.
Neurosci Lett ; 610: 86-91, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26536074

RESUMO

This study investigated whether catechol-O-methyltransferase (COMT) Val/Met polymorphism was associated with variation in event-related desynchronization/synchronization (ERD/ERS) of responses during working memory (WM). 11 Val/Val and 11 Met/Met homozygous participants underwent magnetoencephalography (MEG) while performing a WM task. In contrast to small effects behaviourally, during the delay period Val/Val individuals showed lower ERS in the gamma band (Hz 30-50) in frontal regions, increased ERS in the alpha band (Hz 8-12) in the right frontal and parietal regions and increased ERD in the beta band (Hz 14-30) in the left fronto-temporal regions as compared with Met/Met homozygous individuals. During the response period Val/Val participants showed greater beta ERD in the prefrontal and parietotemporal regions. These results demonstrate that COMT genotype has a strong impact on brain responses (oscillatory activity) during WM performance likely a consequence of compensatory activity during the delay and response periods.


Assuntos
Encéfalo/fisiologia , Catecol O-Metiltransferase/genética , Memória de Curto Prazo , Adulto , Encéfalo/enzimologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Lobo Parietal/fisiologia , Polimorfismo Genético , Córtex Pré-Frontal/fisiologia , Lobo Temporal/fisiologia
10.
Neuroimage ; 118: 1-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26032890

RESUMO

UNLABELLED: Functional magnetic resonance imaging (fMRI) studies have revealed the existence of robust, interconnected brain networks exhibiting correlated low frequency fluctuations during rest, which can be derived by examining inherent spatio-temporal patterns in functional scans independent of any a priori model. In order to explore the electrophysiological underpinnings of these networks, analogous techniques have recently been applied to magnetoencephalography (MEG) data, revealing similar networks that exhibit correlated low frequency fluctuations in the power envelope of beta band (14-30Hz) power. However, studies to date using this technique have concentrated on healthy subjects, and no method has yet been presented for group comparisons. We extended the ICA resting state MEG method to enable group comparisons, and demonstrate the technique in a sample of subjects with major depressive disorder (MDD). We found that the intrinsic resting state networks evident in fMRI appeared to be disrupted in individuals with MDD compared to healthy participants, particularly in the subgenual cingulate, although the electrophysiological correlates of this are unknown. Networks extracted from a combined group of healthy and MDD participants were examined for differences between groups. Individuals with MDD showed reduced correlations between the subgenual anterior cingulate (sgACC) and hippocampus in a network with primary nodes in the precentral and middle frontal gyri. Individuals with MDD also showed increased correlations between insulo-temporal nodes and amygdala compared to healthy controls. To further support our methods and findings, we present test/re-test reliability on independent recordings acquired within the same session. Our results demonstrate that group analyses are possible with the resting state MEG-independent component analysis (ICA) technique, highlighting a new pathway for analysis and discovery. This study also provides the first evidence of altered sgACC connectivity with a motor network. This finding, reliable across multiple sessions, suggests that the sgACC may partially mediate the psychomotor symptoms of MDD via synchronized changes in beta-band power, and expands the idea of the sgACC as a hub region mediating cognitive and emotional symptomatic domains in MDD. Findings of increased connectivity between the amygdala and cortical nodes further support the role of amygdalar networks in mediated depressive symptomatology. CLINICAL TRIALS IDENTIFIER: NCT00024635 (ZIA-MH002927-04).


Assuntos
Encéfalo/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Magnetoencefalografia/métodos , Adulto , Mapeamento Encefálico , Interpretação Estatística de Dados , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Reprodutibilidade dos Testes
11.
Brain Connect ; 5(6): 336-48, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25599264

RESUMO

In typical magnetoencephalography and/or electroencephalography functional connectivity analysis, researchers select one of several methods that measure a relationship between regions to determine connectivity, such as coherence, power correlations, and others. However, it is largely unknown if some are more suited than others for various types of investigations. In this study, the authors investigate seven connectivity metrics to evaluate which, if any, are sensitive to audiovisual integration by contrasting connectivity when tracking an audiovisual object versus connectivity when tracking a visual object uncorrelated with the auditory stimulus. The authors are able to assess the metrics' performances at detecting audiovisual integration by investigating connectivity between auditory and visual areas. Critically, the authors perform their investigation on a whole-cortex all-to-all mapping, avoiding confounds introduced in seed selection. The authors find that amplitude-based connectivity measures in the beta band detect strong connections between visual and auditory areas during audiovisual integration, specifically between V4/V5 and auditory cortices in the right hemisphere. Conversely, phase-based connectivity measures in the beta band as well as phase and power measures in alpha, gamma, and theta do not show connectivity between audiovisual areas. The authors postulate that while beta power correlations detect audiovisual integration in the current experimental context, it may not always be the best measure to detect connectivity. Instead, it is likely that the brain utilizes a variety of mechanisms in neuronal communication that may produce differential types of temporal relationships.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica/métodos , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Estimulação Luminosa/métodos , Adulto Jovem
12.
Cereb Cortex ; 25(7): 1878-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24464944

RESUMO

The processing of social information in the human brain is widely distributed neuroanatomically and finely orchestrated over time. However, a detailed account of the spatiotemporal organization of these key neural underpinnings of human social cognition remains to be elucidated. Here, we applied functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in the same participants to investigate spatial and temporal neural patterns evoked by viewing videos of facial muscle configurations. We show that observing the emergence of expressions elicits sustained blood oxygenation level-dependent responses in the superior temporal sulcus (STS), a region implicated in processing meaningful biological motion. We also found corresponding event-related changes in sustained MEG beta-band (14-30 Hz) oscillatory activity in the STS, consistent with the possible role of beta-band activity in visual perception. Dynamically evolving fearful and happy expressions elicited early (0-400 ms) transient beta-band activity in sensorimotor cortex that persisted beyond 400 ms, at which time it became accompanied by a frontolimbic spread (400-1000 ms). In addition, individual differences in sustained STS beta-band activity correlated with speed of emotion recognition, substantiating the behavioral relevance of these signals. This STS beta-band activity showed valence-specific coupling with the time courses of facial movements as they emerged into full-blown fearful and happy expressions (negative and positive coupling, respectively). These data offer new insights into the perceptual relevance and orchestrated function of the STS and interconnected pathways in social-emotion cognition.


Assuntos
Cognição/fisiologia , Emoções/fisiologia , Reconhecimento Facial/fisiologia , Lobo Frontal/fisiologia , Sistema Límbico/fisiologia , Lobo Temporal/fisiologia , Adulto , Ritmo beta/fisiologia , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Potenciais Evocados , Feminino , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Vias Neurais/fisiologia , Testes Neuropsicológicos , Oxigênio/sangue , Estimulação Luminosa , Tempo de Reação/fisiologia
13.
Neurosci Lett ; 558: 73-7, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24080375

RESUMO

The prediction of future events is fundamental in a large number of critical neurobehavioral contexts including implicit motor learning. This learning process relies on the probabilities with which events occur, and is a dynamic phenomenon. The aim of present study was to investigate the development of anticipatory processes during implicit learning. A decision making task was employed in which the frequency of trial types was manipulated such that one trial type was disproportionately prevalent as compared to the remaining three trial types. A 275 channel whole-head magnetoencephalography (MEG) system was used to investigate the spatiotemporal distribution of event-related desynchronization (ERD) and synchronization (ERS). The results revealed that oscillations within the alpha (10-12 Hz) and beta (14-30 Hz) frequencies were associated with anticipatory processes in distinct networks in the course of learning. During early phases of learning the contralateral motor cortex, the anterior cingulate, the caudate and the inferior frontal gyrus showed ERDs within beta and alpha frequencies, putatively reflecting preparation of next motor response. As the task progressed, alpha ERSs in occipitotemporal regions and putamen likely reflect perceptual anticipation of the forthcoming stimuli.


Assuntos
Antecipação Psicológica , Córtex Cerebral/fisiologia , Aprendizagem/fisiologia , Adulto , Mapeamento Encefálico , Tomada de Decisões , Feminino , Humanos , Magnetoencefalografia , Masculino , Estimulação Luminosa , Probabilidade
14.
Cereb Cortex ; 24(9): 2409-20, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23588186

RESUMO

Neural oscillations are linked to perception and behavior and may reflect mechanisms for long-range communication between brain areas. We developed a causal model of oscillatory dynamics in the face perception network using magnetoencephalographic data from 51 normal volunteers. This model predicted induced responses to faces by estimating oscillatory power coupling between source locations corresponding to bilateral occipital and fusiform face areas (OFA and FFA) and the right superior temporal sulcus (STS). These sources showed increased alpha and theta and decreased beta power as well as selective responses to fearful facial expressions. We then used Bayesian model comparison to compare hypothetical models, which were motivated by previous connectivity data and a well-known theory of temporal lobe function. We confirmed this theory in detail by showing that the OFA bifurcated into 2 independent, hierarchical, feedforward pathways, with fearful expressions modulating power coupling only in the more dorsal (STS) pathway. The power coupling parameters showed a common pattern over connections. Low-frequency bands showed same-frequency power coupling, which, in the dorsal pathway, was modulated by fearful faces. Also, theta power showed a cross-frequency suppression of beta power. This combination of linear and nonlinear mechanisms could reflect computational mechanisms in hierarchical feedforward networks.


Assuntos
Encéfalo/fisiologia , Face , Modelos Neurológicos , Reconhecimento Visual de Modelos/fisiologia , Ritmo alfa/fisiologia , Teorema de Bayes , Ritmo beta/fisiologia , Mapeamento Encefálico , Bases de Dados Factuais , Expressão Facial , Humanos , Modelos Lineares , Magnetoencefalografia , Dinâmica não Linear , Estimulação Luminosa , Ritmo Teta/fisiologia
15.
PLoS One ; 8(8): e72351, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991097

RESUMO

Empirical studies over the past two decades have provided support for the hypothesis that schizophrenia is characterized by altered connectivity patterns in functional brain networks. These alterations have been proposed as genetically mediated diagnostic biomarkers and are thought to underlie altered cognitive functions such as working memory. However, the nature of this dysconnectivity remains far from understood. In this study, we perform an extensive analysis of functional connectivity patterns extracted from MEG data in 14 subjects with schizophrenia and 14 healthy controls during a 2-back working memory task. We investigate uni-, bi- and multivariate properties of sensor time series by computing wavelet entropy of and correlation between time series, and by constructing binary networks of functional connectivity both within and between classical frequency bands ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]). Networks are based on the mutual information between wavelet time series, and estimated for each trial window separately, enabling us to consider both network topology and network dynamics. We observed significant decreases in time series entropy and significant increases in functional connectivity in the schizophrenia group in comparison to the healthy controls and identified an inverse relationship between these measures across both subjects and sensors that varied over frequency bands and was more pronounced in controls than in patients. The topological organization of connectivity was altered in schizophrenia specifically in high frequency [Formula: see text] and [Formula: see text] band networks as well as in the [Formula: see text]-[Formula: see text] cross-frequency networks. Network topology varied over trials to a greater extent in patients than in controls, suggesting disease-associated alterations in dynamic network properties of brain function. Our results identify signatures of aberrant neurophysiological behavior in schizophrenia across uni-, bi- and multivariate scales and lay the groundwork for further clinical studies that might lead to the discovery of new intermediate phenotypes.


Assuntos
Encéfalo/fisiologia , Encéfalo/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Magnetoencefalografia , Masculino
16.
Artigo em Inglês | MEDLINE | ID: mdl-23874288

RESUMO

Complex networks have been observed to comprise small-world properties, believed to represent an optimal organization of local specialization and global integration of information processing at reduced wiring cost. Here, we applied magnitude squared coherence to resting magnetoencephalographic time series in reconstructed source space, acquired from controls and patients with schizophrenia, and generated frequency-dependent adjacency matrices modeling functional connectivity between virtual channels. After configuring undirected binary and weighted graphs, we found that all human networks demonstrated highly localized clustering and short characteristic path lengths. The most conservatively thresholded networks showed efficient wiring, with topographical distance between connected vertices amounting to one-third as observed in surrogate randomized topologies. Nodal degrees of the human networks conformed to a heavy-tailed exponentially truncated power-law, compatible with the existence of hubs, which included theta and alpha bilateral cerebellar tonsil, beta and gamma bilateral posterior cingulate, and bilateral thalamus across all frequencies. We conclude that all networks showed small-worldness, minimal physical connection distance, and skewed degree distributions characteristic of physically-embedded networks, and that these calculations derived from graph theoretical mathematics did not quantifiably distinguish between subject populations, independent of bandwidth. However, post-hoc measurements of edge computations at the scale of the individual vertex revealed trends of reduced gamma connectivity across the posterior medial parietal cortex in patients, an observation consistent with our prior resting activation study that found significant reduction of synthetic aperture magnetometry gamma power across similar regions. The basis of these small differences remains unclear.

17.
J Neurosci ; 33(16): 7079-90, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23595765

RESUMO

What constitutes normal cortical dynamics in healthy human subjects is a major question in systems neuroscience. Numerous in vitro and in vivo animal studies have shown that ongoing or resting cortical dynamics are characterized by cascades of activity across many spatial scales, termed neuronal avalanches. In experiment and theory, avalanche dynamics are identified by two measures: (1) a power law in the size distribution of activity cascades with an exponent of -3/2 and (2) a branching parameter of the critical value of 1, reflecting balanced propagation of activity at the border of premature termination and potential blowup. Here we analyzed resting-state brain activity recorded using noninvasive magnetoencephalography (MEG) from 124 healthy human subjects and two different MEG facilities using different sensor technologies. We identified large deflections at single MEG sensors and combined them into spatiotemporal cascades on the sensor array using multiple timescales. Cascade size distributions obeyed power laws. For the timescale at which the branching parameter was close to 1, the power law exponent was -3/2. This relationship was robust to scaling and coarse graining of the sensor array. It was absent in phase-shuffled controls with the same power spectrum or empty scanner data. Our results demonstrate that normal cortical activity in healthy human subjects at rest organizes as neuronal avalanches and is well described by a critical branching process. Theory and experiment have shown that such critical, scale-free dynamics optimize information processing. Therefore, our findings imply that the human brain attains an optimal dynamical regime for information processing.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Magnetoencefalografia , Modelos Neurológicos , Neurônios/fisiologia , Descanso/fisiologia , Adulto , Feminino , Humanos , Masculino , Dinâmica não Linear , Adulto Jovem
18.
PLoS One ; 7(8): e43166, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22937021

RESUMO

Sensory responses of the brain are known to be highly variable, but the origin and functional relevance of this variability have long remained enigmatic. Using the variable foreperiod of a visual discrimination task to assess variability in the primate cerebral cortex, we report that visual evoked response variability is not only tied to variability in ongoing cortical activity, but also predicts mean response time. We used cortical local field potentials, simultaneously recorded from widespread cortical areas, to gauge both ongoing and visually evoked activity. Trial-to-trial variability of sensory evoked responses was strongly modulated by foreperiod duration and correlated both with the cortical variability before stimulus onset as well as with response times. In a separate set of experiments we probed the relation between small saccadic eye movements, foreperiod duration and manual response times. The rate of eye movements was modulated by foreperiod duration and eye position variability was positively correlated with response times. Our results indicate that when the time of a sensory stimulus is predictable, reduction in cortical variability before the stimulus can improve normal behavioral function that depends on the stimulus.


Assuntos
Potenciais Evocados Visuais/fisiologia , Animais , Macaca mulatta , Masculino , Tempo de Reação/fisiologia , Movimentos Sacádicos/fisiologia , Córtex Visual/fisiologia
19.
PLoS One ; 7(8): e42618, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912714

RESUMO

Examining real-time cortical dynamics is crucial for understanding time perception. Using magnetoencephalography we studied auditory duration discrimination of short (<.5 s) versus long tones (>.5 s) versus a pitch control. Time-frequency analysis of event-related fields showed widespread beta-band (13-30 Hz) desynchronization during all tone presentations. Synthetic aperture magnetometry indicated automatic primarily sensorimotor responses in short and pitch conditions, with activation specific to timing in bilateral inferior frontal gyrus. In the long condition, a right lateralized network was active, including lateral prefrontal cortices, inferior frontal gyrus, supramarginal gyrus and secondary auditory areas. Activation in this network peaked just after attention to tone duration was no longer necessary, suggesting a role in sustaining representation of the interval. These data expand our understanding of time perception by revealing its complex cortical spatiotemporal signature.


Assuntos
Magnetoencefalografia , Percepção do Tempo/fisiologia , Adulto , Comportamento/fisiologia , Encéfalo/fisiologia , Análise por Conglomerados , Discriminação Psicológica/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Masculino , Análise Espaço-Temporal
20.
Front Comput Neurosci ; 6: 101, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23355820

RESUMO

What are the functional neuroimaging measurements required for more fully characterizing the events and locations of neocortical activity? A prime assumption has been that modulation of cortical activity will inevitably be reflected in changes in energy utilization (for the most part) changes of glucose and oxygen consumption. Are such a measures complete and sufficient? More direct measures of cortical electrophysiological activity show event or task-related modulation of amplitude or band-limited oscillatory power. Using magnetoencephalography (MEG), these measures have been shown to correlate well with energy utilization sensitive BOLD fMRI. In this paper, we explore the existence of state changes in electrophysiological cortical activity that can occur independently of changes in averaged amplitude, source power or indices of metabolic rates. In addition, we demonstrate that such state changes can be described by applying a new measure of complexity, rank vector entropy (RVE), to source waveform estimates from beamformer-processed MEG. RVE is a non-parametric symbolic dynamic informational entropy measure that accommodates the wide dynamic range of measured brain signals while resolving its temporal variations. By representing the measurements by their rank values, RVE overcomes the problem of defining embedding space partitions without resorting to signal compression. This renders RVE-independent of absolute signal amplitude. In addition, this approach is robust, being relatively free of tunable parameters. We present examples of task-free and task-dependent MEG demonstrating that RVE provides new information by uncovering hidden dynamical structure in the apparent turbulent (or chaotic) dynamics of spontaneous cortical activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...