Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542137

RESUMO

Breast cancer is the most common cancer in women globally, often necessitating mastectomy and subsequent breast reconstruction. Silicone mammary implants (SMIs) play a pivotal role in breast reconstruction, yet their interaction with the host immune system and microbiome remains poorly understood. This study investigates the impact of SMI surface topography on host antimicrobial responses, wound proteome dynamics, and microbial colonization. Biological samples were collected from ten human patients undergoing breast reconstruction with SMIs. Mass spectrometry profiles were analyzed for acute and chronic wound proteomes, revealing a nuanced interplay between topography and antimicrobial response proteins. 16S rRNA sequencing assessed microbiome dynamics, unveiling topography-specific variations in microbial composition. Surface topography alterations influenced wound proteome composition. Microbiome analysis revealed heightened diversity around rougher SMIs, emphasizing topography-dependent microbial invasion. In vitro experiments confirmed staphylococcal adhesion, growth, and biofilm formation on SMI surfaces, with increased texture correlating positively with bacterial colonization. This comprehensive investigation highlights the intricate interplay between SMI topography, wound proteome dynamics, and microbial transmission. The findings contribute to understanding host-microbe interactions on SMI surfaces, essential for optimizing clinical applications and minimizing complications in breast reconstruction.


Assuntos
Anti-Infecciosos , Implantes de Mama , Neoplasias da Mama , Humanos , Feminino , Silicones , Implantes de Mama/efeitos adversos , Neoplasias da Mama/cirurgia , Proteoma , RNA Ribossômico 16S/genética , Mastectomia , Fibrose
2.
J Orthop Res ; 42(3): 512-517, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146070

RESUMO

Antimicrobial strategies for musculoskeletal infections are typically first developed with in vitro models. The In Vitro Section of the 2023 Orthopedic Research Society Musculoskeletal Infection international consensus meeting (ICM) probed our state of knowledge of in vitro systems with respect to bacteria and biofilm phenotype, standards, in vitro activity, and the ability to predict in vivo efficacy. A subset of ICM delegates performed systematic reviews on 15 questions and made recommendations and assessment of the level of evidence that were then voted on by 72 ICM delegates. Here, we report recommendations and rationale from the reviews and the results of the internet vote. Only two questions received a ≥90% consensus vote, emphasizing the disparate approaches and lack of established consensus for in vitro modeling and interpretation of results. Comments on knowledge gaps and the need for further research on these critical MSKI questions are included.


Assuntos
Biofilmes , Consenso
3.
J Orthop Res ; 42(3): 518-530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38102985

RESUMO

Musculoskeletal infections (MSKI), which are a major problem in orthopedics, occur when the pathogen eludes or overwhelms the host immune system. While effective vaccines and immunotherapies to prevent and treat MSKI should be possible, fundamental knowledge gaps in our understanding of protective, nonprotective, and pathogenic host immunity are prohibitive. We also lack critical knowledge of how host immunity is affected by the microbiome, implants, prior infection, nutrition, antibiotics, and concomitant therapies, autoimmunity, and other comorbidities. To define our current knowledge of these critical topics, a Host Immunity Section of the 2023 Orthopaedic Research Society MSKI International Consensus Meeting (ICM) proposed 78 questions. Systematic reviews were performed on 15 of these questions, upon which recommendations with level of evidence were voted on by the 72 ICM delegates, and another 12 questions were voted on with a recommendation of "Unknown" without systematic reviews. Two questions were transferred to another ICM Section, and the other 45 were tabled for future consideration due to limitations of available human resources. Here we report the results of the voting with internet access to the questions, recommendations, and rationale from the systematic reviews. Eighteen questions received a consensus vote of ≥90%, while nine recommendations failed to achieve this threshold. Commentary on why consensus was not achieved on these questions and potential ways forward are provided to stimulate specific funding mechanisms and research on these critical MSKI host defense questions.


Assuntos
Procedimentos Ortopédicos , Ortopedia , Humanos , Consenso , Antibacterianos/uso terapêutico , Imunoterapia
4.
Bioengineering (Basel) ; 10(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37760120

RESUMO

Bone analyses using mid-infrared spectroscopy are gaining popularity, especially with handheld spectrometers that enable on-site testing as long as the data quality meets standards. In order to diagnose Staphylococcus epidermidis in human bone grafts, this study was carried out to compare the effectiveness of the Agilent 4300 Handheld Fourier-transform infrared with the Perkin Elmer Spectrum 100 attenuated-total-reflectance infrared spectroscopy benchtop instrument. The study analyzed 40 non-infected and 10 infected human bone samples with Staphylococcus epidermidis, collecting reflectance data between 650 cm-1 and 4000 cm-1, with a spectral resolution of 2 cm-1 (Agilent 4300 Handheld) and 0.5 cm-1 (Perkin Elmer Spectrum 100). The acquired spectral information was used for spectral and unsupervised classification, such as a principal component analysis. Both methods yielded significant results when using the recommended settings and data analysis strategies, detecting a loss in bone quality due to the infection. MIR spectroscopy provides a valuable diagnostic tool when there is a tissue shortage and time is of the essence. However, it is essential to conduct further research with larger sample sizes to verify its pros and cons thoroughly.

5.
Front Bioeng Biotechnol ; 11: 1255947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691899

RESUMO

In dentistry, the most commonly used implant materials are CP-Titanium Grade 4 and Ti-6Al-4V ELI, possessing comparably high Young's modulus (>100 GPa). In the present study, the second-generation titanium alloy Ti-13Nb-13Zr is investigated with respect to the production of advanced dental implant systems. This should be achieved by the fabrication of long semi-finished bars with high strength and sufficient ductility to allow the automated production of small implants at low Young's modulus (<80 GPa) to minimize stress shielding, bone resorption, and gap formation between the bone and implant. In addition, bacterial colonization is to be reduced, and bone adhesion is to be enhanced by adjusting the microstructure. To do so, a dedicated thermo-mechanical treatment for Ti-13Nb-13Zr has been developed. This includes the adaption of equal channel angular swaging, a modern process of severe plastic deformation to continuously manufacture nanostructured materials, to Ti-13Nb-13Zr and short-time recrystallization and ageing treatments. In particular, two-pass equal channel angular swaging at a deformation temperature of 150°C and a counterpressure of 8 MPa has successfully been used to avoid shear band formation during deformation and to produce long Ti-13Nb-13Zr bars of 8 mm diameter. During recrystallization treatment at 700°C for 10 min followed by water quenching, a sub-micron-size primary α-phase in a matrix of α″-phase was developed. Subsequent ageing at 500°C for 1 h leads to martensite decomposition and, thus, to a homogeneously nanostructured microstructure of α- and ß-phase with substructures smaller than 200 nm. The resulting mechanical properties, especially the ultimate tensile strength of more than 990 MPa, fulfill the requirements of ASTM F1713 at Young's modulus of 73 GPa. Biological investigations show promising results in reducing bacterial biofilm formation and increased cell proliferation of osteoblasts compared to CP-Titanium Grade 4 and Ti-6Al-4V ELI, especially, if etched surfaces are applied.

6.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203710

RESUMO

Osteomyelitis is a bone disease caused by bacteria that can damage bone. Raman handheld spectroscopy has emerged as a promising diagnostic tool for detecting bone infection and can be used intraoperatively during surgical procedures. This study involved 120 bone samples from 40 patients, with 80 samples infected with either Staphylococcus aureus or Staphylococcus epidermidis. Raman handheld spectroscopy demonstrated successful differentiation between healthy and infected bone samples and between the two types of bacterial pathogens. Raman handheld spectroscopy appears to be a promising diagnostic tool in bone infection and holds the potential to overcome many of the shortcomings of traditional diagnostic procedures. Further research, however, is required to confirm its diagnostic capabilities and consider other factors, such as the limit of pathogen detection and optimal calibration standards.


Assuntos
Doenças Ósseas , Osteomielite , Humanos , Osteomielite/diagnóstico , Calibragem , Nível de Saúde , Análise Espectral Raman
7.
Antibiotics (Basel) ; 11(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421291

RESUMO

Background: Around 1-2% of all implantation surgeries lead to implant-related infections, incurring costs of $40,000-$160,000 per total hip PJI. The 5-year mortality rate of prosthetic joint infections is up to 21%. To prevent infections during surgery, sterile surgery rooms and procedures have been developed and certified standards have been established. To guarantee the sterility, implants can be acquired already sterile from manufacturers. Some titanium implants can be delivered unsterilized with a manual for sterilization procedure in compliance with ISO 17664. The aim of this study is to evaluate if the most used sterilization methods (steam sterilization in an autoclave and UV light sterilization) of titanium alloys, can influence the biofilm forming capacity of Staphylococcus aureus. In this study, we examined the influence of sterilization methods on the gene expression of biofilm-associated genes and regulators. Methods: We compared gene expression of icaADBC, SarA, SigB, and SodA on titanium CP4 and Ti6Al4V alloys sterilized by UV-light and pressurized saturated steam sterilization. We performed RT-qPCR after RNA extraction of Staphylococcus aureus ATCC 29213. In addition, bacterial cell growth on the sterilized titanium surfaces was examined by colony forming unit counting on agar plates after 24 h of incubation. Results: Colony forming units of S. aureus on titanium CP4 samples showed a higher tendency in colony counts when sterilized with UV light than with pressurized saturated steam (autoclaved). Similarly, colony forming unit counts on Ti6Al4V samples showed tendencies of higher numbers on UV light sterilized samples than on autoclaved samples. Gene expression of icaADBC, SarA and SodA between steamed samples and UV light sterilized samples showed no difference on titanium CP4 samples, whereas SigB showed higher gene expression on titanium CP4 samples when sterilized with UV light than in an autoclave. On autoclaved Ti6Al4V samples, all examined genes showed 4 to 9 times higher fold changes in gene expression than on UV light sterilized samples. Conclusions: This study indicates that steam sterilization of Ti6Al4V can increase biofilm formation of S. aureus on its surface. The significantly increased gene expression of biofilm responsible genes may indicate a modification of titanium surfaces on alloy components. This may promote biofilm formation that can lead to implant-infections in vivo.

8.
Antibiotics (Basel) ; 11(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884185

RESUMO

Background: Currently, 1-2% of all prosthetic joint surgeries are followed by an infection. These infections cause approximately 4% of deaths in the first year after surgery, while the 5-year mortality rate is up to 21%. Prosthetic joint infections are mainly caused by Staphylococcus aureus or Staphylococcus epidermis strains. Both species share the capability of biofilm formation and methicillin resistance. The formation of biofilm helps bacterial cells to withstand critical environmental conditions. Due to their tolerance against antibacterial substances, biofilms are a significant problem in modern medicine. Alternatives for the use of methicillin as a therapeutic are not yet widespread. The use of omega-3 fatty acids, such as docosahexaenoic acid, may help against prosthetic joint infections and lower mortality rates. The aim of this study is to evaluate if docosahexaenoic acid offers a safe anti-biofilm activity against Staphylococcus aureus and MRSA without enhancing icaADBC-dependent biofilm formation or additional stress responses, therefore enhancing antibiotic tolerance and resistance. Methods: In this study, we examined the gene expression of biofilm-associated genes and regulators. We performed RT-qPCR after RNA extraction of Staphylococcus aureus ATCC 29213 and one clinical MRSA strain. We compared gene expression of icaADBC, SarA, SigB, and agrAC under the influence of 1.25 mg /L and 0.625 mg/L of docosahexaenoic acid to their controls. Results: We found a higher expression of regulatory genes such as SarA, SigB, agrA, and agrC at 1.25 mg/L of docosahexaenoic acid in ATCC 29213 and a lower increase in gene expression levels in clinical MRSA isolates. icaADBC was not affected in both strains at both concentration levels by docosahexaenoic acid. Conclusions: Docosahexaenoic acid does not enhance icaADBC-dependent biofilm formation while still reducing bacterial CFU in biofilms. Docosahexaenoic acid can be considered an option as a therapeutic substance against biofilm formation and may be a good alternative in reducing the risk of MRSA formation.

9.
Antibiotics (Basel) ; 11(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35884224

RESUMO

Background: Antibiotics delivered from implanted bone substitute materials (BSM) can potentially be used to prevent acute infections and biofilm formation, providing high concentrations of antibiotics at the surgical site without systemic toxicity. In addition, BSM should allow osteoconductivity supporting bone healing without further surgery. Promising results have been achieved using lyophilized bone allografts mixed with antibiotics. Methods: In this study specially prepared human bone allografts were evaluated as an antibiotic carrier in vitro and in vivo. The efficacy of different antibiotic-impregnated bone allografts was measured by drug release tests in vitro and in vivo and bacterial susceptibility tests using four bacterial species usually responsible for implant-associated infections. Results: The loading procedures of allograft bone substitutes with antibiotics were successful. Some of the antibiotic concentrations exceeded the MIC90 for up to 7 days in vitro and for up to 72 h in vivo. The susceptibility tests showed that S. epidermidis ATCC 12228 was the most susceptible bacterial species in comparison to the other strains tested for all antibiotic substances. Vancomycin and rifampicin showed the best results against standard and patient-isolated strains in vitro. In vivo, new bone formation was comparable in all study groups including the control group without antibiotic loading. Conclusions: Human bone allografts showed the capacity to act as customized loaded antibiotic carriers to prevent acute infections and should be considered in the management of bone infections in combination with systemic antimicrobial therapy.

10.
Biofabrication ; 14(3)2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35333193

RESUMO

Neuroblastoma is an extracranial solid tumor which develops in early childhood and still has a poor prognosis. One strategy to increase cure rates is the identification of patient-specific drug responses in tissue models that mimic the interaction between patient cancer cells and tumor environment. We therefore developed a perfused and micro-vascularized tumor-environment model that is directly bioprinted into custom-manufactured fluidic chips. A gelatin-methacrylate/fibrin-based matrix containing multiple cell types mimics the tumor-microenvironment that promotes spontaneous micro-vessel formation by embedded endothelial cells. We demonstrate that both, adipocyte- and iPSC-derived mesenchymal stem cells can guide this process. Bioprinted channels are coated with endothelial cells post printing to form a dense vessel-tissue barrier. The tissue model thereby mimics structure and function of human soft tissue with endothelial cell-coated larger vessels for perfusion and micro-vessel networks within the hydrogel-matrix. Patient-derived neuroblastoma spheroids are added to the matrix during the printing process and grown for more than two weeks. We demonstrate that micro-vessels are attracted by and grow into tumor spheroids and that neuroblastoma cells invade the tumor-environment as soon as the spheroids disrupt. In summary, we describe the first bioprinted, micro-vascularized neuroblastoma-tumor-environment model directly printed into fluidic chips and a novel medium-throughput biofabrication platform suitable for studying tumor angiogenesis and metastasis in precision medicine approaches in future.


Assuntos
Células-Tronco Mesenquimais , Neuroblastoma , Pré-Escolar , Células Endoteliais , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Neuroblastoma/tratamento farmacológico , Medicina de Precisão , Impressão Tridimensional , Engenharia Tecidual , Microambiente Tumoral
11.
Hip Int ; 32(4): 426-430, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33025837

RESUMO

INTRODUCTION: Infection is a devasting complication after primary and revision arthroplasty. Therefore, identifying potential sources of infection can help to reduce infection rates. The aim of this study was to identify the impact and potential risk of contamination for glows and surgical helmets during arthroplasty procedures. METHODS: Surveillance cultures were used to detect contamination of the glow interface during the surgery and the surgical helmets immediately at the end of the surgery. The cultures were taken from 49 arthroplasty procedures from the surgeon as well as the assisting surgeon. RESULTS: In total, 196 cultures were taken. 31 (15.8%) of them showed a contamination. 12 (13.5%) of 98 cultures taken from the surgical helmets were positive, while 18 (18.3%) of 96 cultures taken from the gloves showed a contamination. DISCUSSION: The study showed that during arthroplasty procedures, surgical helmets and gloves were frequently contaminated with bacteria. In 20 of 49 (40.8%) arthroplasty surgeries, either the surgical helmet or the gloves showed a contamination. Surgeons should be aware that they might be a source for infection during arthroplasty surgeries.


Assuntos
Artroplastia de Quadril , Luvas Cirúrgicas , Artroplastia de Quadril/métodos , Bactérias , Luvas Cirúrgicas/microbiologia , Dispositivos de Proteção da Cabeça , Humanos
12.
Arch Orthop Trauma Surg ; 142(10): 2497-2501, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33768277

RESUMO

INTRODUCTION: To retrospectively investigate the early postoperative range of motion (ROM) (days 4, 7, 10) after total knee arthroplasty (TKA) and to test for associations (a) with long-term outcome in terms of ROM and (b) with a disease-specific knee score. MATERIALS AND METHODS: A retrospective analysis was performed in patients with previous primary TKA. Data taken from the medical records were ROM from preoperative and postoperative days 4, 7 and 10 and 1 year. As patient-reported outcome the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC Score) was taken from preoperative and one year after TKA. RESULTS: 316 patients (330 knees) were available. Only negligible correlations were determined between ROM at twelve months postoperative and ROM in the early postoperative days (days 4, 7, 10). Similarly, only negligible correlations were determined between ROM in the early postoperative days (days 4, 7, 10) and the 1-year WOMAC. CONCLUSION: From the main findings it would seem that steepness of ROM ascent in the early postoperative days is of minor importance for (a) long-term ROM and (b) long-term knee score outcome after TKA.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Humanos , Articulação do Joelho/cirurgia , Osteoartrite do Joelho/cirurgia , Amplitude de Movimento Articular , Estudos Retrospectivos , Resultado do Tratamento
13.
Antibiotics (Basel) ; 10(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34438941

RESUMO

Background: N-chlorotaurine (NCT), an antiseptic that originates from the human defense system, has broad-spectrum microbicidal activity and is well tolerated by human tissue and applicable to sensitive body regions. Bacteria in short-term biofilms, too, have been shown to be killed by NCT. It was the aim of the present study to demonstrate the activity of NCT against bacteria and yeasts in longer-lasting biofilms, including their co-culture. Materials and methods: Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella variicola biofilms were grown for 14 weeks in MBECTM inoculator with 96 well base. Some pegs were pinched off weekly and incubated in 1% NCT in PBS (PBS only for controls) at pH 7.1 and 37 °C, for 30 and 60 min. Subsequently, bacteria were resuspended by ultrasonication and subjected to quantitative cultures. Similar tests were conducted with C. albicans biofilms grown on metal (A2-steel) discs for 4 weeks. Mixed co-cultures of C. albicans plus each of the three bacterial strains on metal discs were grown for 5-7 weeks and weekly evaluated, as mentioned above. Results: Single biofilms of S. aureus, P. aeruginosa, and K. variicola grew to approximately 1 × 106 colony forming units (CFU)/mL and C. albicans to 1 × 105 CFU/mL. In combined biofilms, the CFU count was about 1 log10 lower. Viable counts of biofilms of single bacteria were reduced by 2.8 to 5.6 log10 in 1% NCT after 60 min (0.9 to 4.7 log10 after 30 min) with Gram-negative bacteria being more susceptible than S. aureus. Significant reduction of C. albicans by 2.0 to 2.9 log10 occurred after 4 h incubation. In combined biofilms, viable counts of C. albicans were reduced by 1.1 to 2.4 log10 after 4 h, while they reached the detection limit after 1 to 2 h with bacteria (2.0 to > 3.5 log10 reduction). Remarkably, older biofilms demonstrated no increase in resistance but constant susceptibility to NCT. This was valid for all tested pathogens. In electron microscopy, morphological differences between NCT-treated and non-treated biofilms could be found. Conclusions: NCT is active against long-term biofilms of up to several months irrespective of their age. Combined biofilm cultures of yeasts and bacteria show a similar susceptibility pattern to NCT as single ones. These results contribute to the explanation of the clinical efficacy of NCT, for instance, in infected chronic wounds and purulently coated crural ulcerations.

14.
Antibiotics (Basel) ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209737

RESUMO

Bacterial antibiotic resistance and biofilm formation are mechanisms usually involved in the pathogeny of implant-related infections. Worldwide, antibiotic susceptibility tests are usually carried out using nutrient-rich media. Clinical routine laboratories and even research centers use for example EUCAST or CLSI for guidelines. In this study, we investigated the effect of different nutrient media on the antibiotic susceptibility and icaADBC gene expression of bacteria in biofilm. As media, Müller-Hinton Bouillon (MHB), Tryptic Soy Broth (TSB) and human synovial fluid (SF) diluted 1:4 in phosphate buffered saline (PBS), each also supplemented with 1% glucose, were used. The influence of different nutrient media on the antibiotic susceptibility of coagulase-negative staphylococci (CoNS) was evaluated by counting of colony-forming units (CFU) and by checking the metabolic activity of the bacteria. We used reverse transcriptase and real-time qPCR to investigate the influence of nutrient media on the biofilm gene expression. We used two-way analysis of variance (ANOVA). p < 0.05 was considered to be statistically significant. Significant differences in growth and antibiotic susceptibility were detected in all strains tested among the different media used. The nutrient media showed influence on the cell viability of all bacteria after antibiotic treatment. IcaADBC gene expression was significantly influenced by glucose and all nutrient media. The results highlight the influence of glucose on the antibiotic susceptibility, growth and gene expression of all strains tested. For all strains, a significant difference in bacterial recovery, viability and gene expression were found when compared to biofilm grown in SF.

15.
Materials (Basel) ; 14(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808789

RESUMO

In the healthcare environment, bandage systems are versatile medical devices to position and fix patients' torsos or extremities. In this study, the mechanical and morphological properties of an innovative patient position system, iFix, were assessed and compared to two commercially available bandages. Morphological properties were investigated using a scanning electron microscope (SEM). The iFix bandage showed anisotropic mechanical properties, with a more rigid behavior in the longitudinal direction and a more elastic behavior in the transverse direction. This behavior results from the organization of the fibers visible in the SEM images. All three materials investigated in this study were able to support similar maximum loads. In cases where a rigid fixation of patient limbs or torso is necessary, the authors recommend the usage of iFix. In vivo studies should be carried out to prove safety in a surgical environment before its clinical usage.

16.
Biomedicines ; 9(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810261

RESUMO

Background: Implantable medical devices, such as prosthetics, catheters, and several other devices, have revolutionized medicine, but they increase the infection risk. In previous decades, commercially available antibiotics lost their activity against coagulase-negative Staphylococci (CoNS) and several other microorganisms. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the two major omega-3 polyunsaturated fatty acids (ω-3 PUFAs) with antimicrobial properties. Materials and Methods: In this study, we tested the EPA and the DHA for its antibacterial and anti-biofilm activity in vitro against Staphylococcus epidermidis, Staphylococcus aureus, and different CoNS as reference strains and isolated from patients undergoing orthopedic treatment for implant infections. The tests were carried out with the strains in planktonic and biofilm form. Cytotoxicity assay was carried out with EPA and DHA using human gingival fibroblasts HGF-1. Results: The highest concentration of EPA and DHA promoted the complete killing of S. epidermidis 1457 and S. aureus ATCC 25923 in planktonic form. The fatty acids showed low activity against P. aeruginosa. EPA and DHA completely killed or significantly reduced the count of planktonic bacteria of the patient isolated strains. When incubated with media enriched with EPA and DHA, the biofilm formation was significantly reduced on S. epidermidis 1457 and not present on S. aureus ATCC 25923. The reduction or complete killing were also observed with the clinical isolates. The pre-formed biofilms showed reduction of the cell counting after treatment with EPA and DHA. Conclusion: In this study, the ω-3 PUFAs EPA and DHA showed antimicrobial and anti-biofilm activity in vitro against S. aureus, S. epidermidis, and P. aeruginosa, as well as against multi-drug resistant S. aureus and CoNS strains isolated from patients undergoing periprosthetic joint infections (PJI) treatment. Higher concentrations of the fatty acids showed killing activity on planktonic cells and inhibitory activity of biofilm formation. Although both substances showed antimicrobial activity, EPA showed better results in comparison with DHA. In addition, when applied on human gingival fibroblasts in vitro, EPA and DHA showed a possible protective effect on cells cultured in medium enriched with ethanol. Further studies are required to confirm the antimicrobial activity of EPA and DHA against multi-drug resistant strains and pan-drug resistant strains.

17.
Microb Pathog ; 154: 104834, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33691179

RESUMO

The use of bacteriophages for the treatment of bacterial infections has been extensively studied. Nonetheless, the stress response regarding bacteriophage infection and the expression of virulence factors of Pseudomonas aeruginosa after phage infection is poorly discussed. In this study, we evaluated biofilm formation capacity and expression of virulence factors of P. aeruginosa after bacteriophage infection. Biofilm growth rates, biofilm morphology, pyocyanin production and elastase activity were evaluated after 2, 8, 24 and 48 h of co-cultivation with bacteriophages that was recently characterized and showed to be infective towards clinical isolates. In parallel, quantitative real-time polymerase chain reactions were carried out to verify the expression of virulence-related genes. Bacteriophages promoted substantial changes in P. aeruginosa biofilm growth at early co-culture time. In addition, at 8 h, we observed that some cultures developed filaments. Although bacteriophages did not alter both pyocyanin and protease activity, changes on the expression level of genes related to virulence factors were detected. Usually, lasI, pslA, lasB and phzH genes were upregulated after 2 and 48 h of co-culture. These results highlight the need for extensive investigation of pathways and molecules involved in phage infection, since the transcriptional changes would suggest a response activation by P. aeruginosa.


Assuntos
Bacteriófagos , Infecções por Pseudomonas , Biofilmes , Humanos , Pseudomonas aeruginosa/genética , Percepção de Quorum , Virulência , Fatores de Virulência/genética
18.
J Microbiol Methods ; 184: 106205, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33774109

RESUMO

It is well-known that the use of high-speed burring devices with irrigation used in bone surgery produces aerosols, and can toss tissue particles into space. The aim of this study was to assess the spatial vertical contamination in the sterile operation field while using a high-speed cutting device at various locations. A fresh porcine knee was resected for 10 min with a high-speed burring device. To determine the spatial contamination distribution bacteria were used as a tracer. In this novel method for detecting environmental contamination droplets of the contaminated irrigation solution were collected on vertically mounted Petri dishes and the number of colony-forming units was counted. Contamination of varying intensity was observed throughout the room. The highest contamination was found perpendicular to the bur rotation axis in a distance 0.5 m from the bur, at a height of 1.4 m. Around this spot, colony-forming units count isotropically drops to less than 100 CFUs at an area of 0.5 m in diameter. The contamination decreases with increasing distance to the bur head and a main direction of contamination was identified. Placing critical sterile objects in the highly contaminated space during and after bone resection procedures should be avoided whenever possible.


Assuntos
Aerossóis/química , Microbiologia do Ar , Bactérias/crescimento & desenvolvimento , Osso e Ossos/microbiologia , Osso e Ossos/cirurgia , Animais , Bactérias/isolamento & purificação , Suínos , Irrigação Terapêutica
19.
In Vivo ; 35(2): 713-719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622864

RESUMO

AIM: Bone morphogenetic protein 2 (BMP2) is a member of a subgroup of the transforming growth factor beta superfamily and triggers various signaling events which in turn stimulate chondrogenesis, osteogenesis, angiogenesis and extracellular matrix remodeling leading to fracture healing. In this study, we quantified the concentration of BMP2 in fresh human bone grafts obtained from 40 patients undergoing hip replacement surgery. Besides the concentration, the activity of the detected BMP2 was also investigated. MATERIALS AND METHODS: In this study, the concentration of BMP2 in fresh human bone grafts obtained from 40 patients undergoing hip replacement surgery was quantified. Human BMP2 enzyme-linked immunosorbent assays and bicinchoninic acid quantification was used to determine the total concentration of protein present in each sample. To determine the activity of the BMP2 found in each bone sample, alkaline phosphatase activity was measured by colorimetric assay. RESULTS: The amount of BMP2 seemed to vary slightly between the patients. Taking into consideration the patient's gender, we observed that male patients presented slightly more BMP2 in comparison with females. When analyzing the activity of BMP2, we observed that in female patients, the activity was slightly higher in comparison to males. This variation may be caused by a number of factors, including but not limited to gender, age, osteoporosis and previous diseases. This information shows that the osteogenic potential of different bone graft samples is not consistent. CONCLUSION: The activity of BMP2 in femur heads obtained from patients undergoing total hip replacement surgery showed significant variation according to gender and age. The measurement of bone proteins activity might be promising as a qualitative method in bone banks and should be further investigated.


Assuntos
Artroplastia de Quadril , Proteína Morfogenética Óssea 2 , Diferenciação Celular , Condrogênese , Feminino , Humanos , Masculino , Osteogênese , Fator de Crescimento Transformador beta
20.
J Orthop Res ; 39(2): 227-239, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31997412

RESUMO

Antibiotic-loaded bone cement (ALBC) is broadly used to treat orthopaedic infections based on the rationale that high-dose local delivery is essential to eradicate biofilm-associated bacteria. However, ALBC formulations are empirically based on drug susceptibility from routine laboratory testing, which is known to have limited clinical relevance for biofilms. There are also dosing concerns with nonstandardized, surgeon-directed, hand-mixed formulations, which have unknown release kinetics. On the basis of our knowledge of in vivo biofilms, pathogen virulence, safety issues with nonstandardized ALBC formulations, and questions about the cost-effectiveness of ALBC, there is a need to evaluate the evidence for this clinical practice. To this end, thought leaders in the field of musculoskeletal infection (MSKI) met on 1 August 2019 to review and debate published and anecdotal information, which highlighted four major concerns about current ALBC use: (a) substantial lack of level 1 evidence to demonstrate efficacy; (b) ALBC formulations become subtherapeutic following early release, which risks induction of antibiotic resistance, and exacerbated infection from microbial colonization of the carrier; (c) the absence of standardized formulation protocols, and Food and Drug Administration-approved high-dose ALBC products to use following resection in MSKI treatment; and (d) absence of a validated assay to determine the minimum biofilm eradication concentration to predict ALBC efficacy against patient specific micro-organisms. Here, we describe these concerns in detail, and propose areas in need of research.


Assuntos
Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Cimentos Ósseos/uso terapêutico , Infecções Relacionadas à Prótese/tratamento farmacológico , Farmacorresistência Bacteriana , Medicina Baseada em Evidências , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...