Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 9(1): 23-41, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19203241

RESUMO

In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice with all ESSC-ESF reports, and amended accordingly. The Ad Hoc Group defined overarching scientific goals for Europe's exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return as the recognized primary goal; furthermore the report clearly states that Europe should position itself as a major actor in defining and leading Mars sample return missions. The report is reproduced in this article. On 26 November 2008 the Ministers of ESA Member States decided to give a high strategic priority to the robotic exploration programme of Mars by funding the enhanced ExoMars mission component, in line therefore with the recommendations from this ESSC-ESF report.


Assuntos
Agências Internacionais , Sociedades Científicas , Voo Espacial , Astronautas , Europa (Continente) , Meio Ambiente Extraterreno , Objetivos , Humanos , Cooperação Internacional , Marte , Planetas Menores , Lua , Robótica
2.
Astrobiology ; 8(3): 613-22, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18680411

RESUMO

The Jovian InfraRed Auroral Mapper (JIRAM) has been accepted by NASA for inclusion in the New Frontiers mission "Juno," which will launch in August 2011. JIRAM will explore the dynamics and the chemistry of Jupiter's auroral regions by high-contrast imaging and spectroscopy. It will also analyze jovian hot spots to determine their vertical structure and infer possible mechanisms for their formation. JIRAM will sound the jovian meteorological layer to map moist convection and determine water abundance and other constituents at depths that correspond to several bars pressure. JIRAM is equipped with a single telescope that accommodates both an infrared camera and a spectrometer to facilitate a large observational flexibility in obtaining simultaneous images in the L and M bands with the spectral radiance over the central zone of the images. Moreover, JIRAM will be able to perform spectral imaging of the planet in the 2.0-5.0 microm interval of wavelengths with a spectral resolution better than 10 nm. Instrument design, modes, and observation strategy will be optimized for operations onboard a spinning satellite in polar orbit around Jupiter. The JIRAM heritage comes from Italian-made, visual-infrared imaging spectrometers dedicated to planetary exploration, such as VIMS-V on Cassini, VIRTIS on Rosetta and Venus Express, and VIR-MS on the Dawn mission.


Assuntos
Júpiter , Voo Espacial/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho , Atmosfera/química , Meio Ambiente Extraterreno/química , Água/análise
3.
Science ; 312(5772): 400-4, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16627738

RESUMO

Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the "phyllocian" era) are found in the oldest terrains; sulfates were formed in a second era (the "theiikian" era) in an acidic environment. Beginning about 3.5 billion years ago, the last era (the "siderikian") is dominated by the formation of anhydrous ferric oxides in a slow superficial weathering, without liquid water playing a major role across the planet.


Assuntos
Marte , Minerais , Água , Silicatos de Alumínio , Atmosfera , Dióxido de Carbono , Argila , Meio Ambiente Extraterreno , Compostos Férricos , Silicatos , Sulfatos , Tempo
4.
Science ; 310(5745): 92-5, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16210535

RESUMO

Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80 degrees W and 20 degrees S. This area is bright in reflected light at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.


Assuntos
Saturno , Atmosfera , Gelo-Seco , Meio Ambiente Extraterreno , Gelo , Metano , Astronave , Análise Espectral , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...