Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470714

RESUMO

The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on messenger RNA (mRNA) in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a BA representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release, and suggests that the latter step is rate-limiting for METTL3. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.


Assuntos
Metiltransferases , RNA , Humanos , RNA/metabolismo , Metiltransferases/metabolismo , Adenosina/metabolismo , S-Adenosilmetionina , Catálise
2.
JACS Au ; 4(2): 713-729, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425900

RESUMO

Methylation of adenine N6 (m6A) is the most frequent RNA modification. On mRNA, it is catalyzed by the METTL3-14 heterodimer complex, which plays a key role in acute myeloid leukemia (AML) and other types of blood cancers and solid tumors. Here, we disclose the first proteolysis targeting chimeras (PROTACs) for an epitranscriptomics protein. For designing the PROTACs, we made use of the crystal structure of the complex of METTL3-14 with a potent and selective small-molecule inhibitor (called UZH2). The optimization of the linker started from a desfluoro precursor of UZH2 whose synthesis is more efficient than that of UZH2. The first nine PROTAC molecules featured PEG- or alkyl-based linkers, but only the latter showed cell penetration. With this information in hand, we synthesized 26 PROTACs based on UZH2 and alkyl linkers of different lengths and rigidity. The formation of the ternary complex was validated by a FRET-based biochemical assay and an in vitro ubiquitination assay. The PROTACs 14, 20, 22, 24, and 30, featuring different linker types and lengths, showed 50% or higher degradation of METTL3 and/or METTL14 measured by Western blot in MOLM-13 cells. They also showed substantial degradation on three other AML cell lines and prostate cancer cell line PC3.

3.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732228

RESUMO

The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on mRNA in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a bisubstrate analogue representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release catalysed by METTL3, and suggests that the latter step is rate-limiting. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.

4.
Sci Adv ; 8(30): eabo0517, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35895815

RESUMO

Nucleosome assembly requires the coordinated deposition of histone complexes H3-H4 and H2A-H2B to form a histone octamer on DNA. In the current paradigm, specific histone chaperones guide the deposition of first H3-H4 and then H2A-H2B. Here, we show that the acidic domain of DNA repair factor APLF (APLFAD) can assemble the histone octamer in a single step and deposit it on DNA to form nucleosomes. The crystal structure of the APLFAD-histone octamer complex shows that APLFAD tethers the histones in their nucleosomal conformation. Mutations of key aromatic anchor residues in APLFAD affect chaperone activity in vitro and in cells. Together, we propose that chaperoning of the histone octamer is a mechanism for histone chaperone function at sites where chromatin is temporarily disrupted.


Assuntos
Histonas , Nucleossomos , DNA/química , Reparo do DNA , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/genética
5.
Methods Mol Biol ; 1837: 177-197, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109612

RESUMO

Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. The activity of architectural proteins is often subject to further modulation and regulation through the interaction with a diverse array of other protein factors. Detailed knowledge on the binding modes involved is crucial for our understanding of how these protein-protein and protein-DNA interactions shape the functional landscape of chromatin in all kingdoms of life: bacteria, archaea, and eukarya.Microscale thermophoresis (MST) is a biophysical technique that has seen increasing application in the study of biomolecular interactions thanks to its solution-based nature, its rapid application, modest sample demand, and the sensitivity of the thermophoresis effect to binding events. Here, we describe the use of MST in the study of chromatin interactions, with emphasis on the wide range of ways in which these experiments are set up and the diverse types of information they reveal. These aspects are illustrated with four very different systems: the sequence-dependent DNA compaction by architectural protein HMfB; the sequential binding of core histone complexes to histone chaperone APLF; the impact of the nucleosomal context on the recognition of histone modifications; and the binding of a LANA-derived peptide to nucleosome core. Special emphasis is given to the key steps in the design, execution, and analysis of MST experiments in the context of the provided examples.


Assuntos
Cromatina/química , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Análise de Dados , Corantes Fluorescentes/química , Histonas/metabolismo , Nucleossomos/metabolismo , Ligação Proteica , Coloração e Rotulagem
6.
Nucleic Acids Res ; 46(14): 7138-7152, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29905837

RESUMO

Genome replication, transcription and repair require the assembly/disassembly of the nucleosome. Histone chaperones are regulators of this process by preventing formation of non-nucleosomal histone-DNA complexes. Aprataxin and polynucleotide kinase like factor (APLF) is a non-homologous end-joining (NHEJ) DNA repair factor that possesses histone chaperone activity in its acidic domain (APLFAD). Here, we studied the molecular basis of this activity using biochemical and structural methods. We find that APLFAD is intrinsically disordered and binds histone complexes (H3-H4)2 and H2A-H2B specifically and with high affinity. APLFAD prevents unspecific complex formation between H2A-H2B and DNA in a chaperone assay, establishing for the first time its specific histone chaperone function for H2A-H2B. On the basis of a series of nuclear magnetic resonance studies, supported by mutational analysis, we show that the APLFAD histone binding domain uses two aromatic side chains to anchor to the α1-α2 patches on both H2A and H2B, thereby covering most of their DNA-interaction surface. An additional binding site on both APLFAD and H2A-H2B may be involved in the handoff between APLF and DNA or other chaperones. Together, our data support the view that APLF provides not only a scaffold but also generic histone chaperone activity for the NHEJ-complex.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Chaperonas de Histonas/química , Proteínas de Ligação a Poli-ADP-Ribose/química , DNA/química , DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , Domínios Proteicos
7.
Angew Chem Int Ed Engl ; 53(39): 10300-14, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25070284

RESUMO

The dream of cell biologists is to be able to watch biological macromolecules perform their duties in the intracellular environment of live cells. Ideally, the observation of both the location and the conformation of these macromolecules with biophysical techniques is desired. The development of many fluorescence techniques, including superresolution fluorescence microscopy, has significantly enhanced our ability to spot proteins and other molecules in the crowded cellular environment. However, the observation of their structure and conformational changes while they attend their business is still very challenging. In principle, NMR and EPR spectroscopy can be used to investigate the conformation and dynamics of biological macromolecules in living cells. The development of in-cell magnetic resonance techniques has demonstrated the feasibility of this approach. Herein we review the different techniques with a focus on liquid-state in-cell NMR spectroscopy, provide an overview of applications, and discuss the challenges that lie ahead.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Animais , Escherichia coli/metabolismo , Humanos , Ácidos Nucleicos/química , Saccharomyces cerevisiae/metabolismo
8.
J Am Chem Soc ; 135(37): 13796-803, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23968199

RESUMO

Proteins and nucleic acids maintain the crowded interior of a living cell and can reach concentrations in the order of 200-400 g/L which affects the physicochemical parameters of the environment, such as viscosity and hydrodynamic as well as nonspecific strong repulsive and weak attractive interactions. Dynamics, structure, and activity of macromolecules were demonstrated to be affected by these parameters. However, it remains controversially debated, which of these factors are the dominant cause for the observed alterations in vivo. In this study we investigated the globular folded peptidyl-prolyl isomerase Pin1 in Xenopus laevis oocytes and in native-like crowded oocyte extract by in-cell NMR spectroscopy. We show that active Pin1 is driven into nonspecific weak attractive interactions with intracellular proteins prior to substrate recognition. The substrate recognition site of Pin1 performs specific and nonspecific attractive interactions. Phosphorylation of the WW domain at Ser16 by PKA abrogates both substrate recognition and the nonspecific interactions with the endogenous proteins. Our results validate the hypothesis formulated by McConkey that the majority of globular folded proteins with surface charge properties close to neutral under physiological conditions reside in macromolecular complexes with other sticky proteins due to molecular crowding. In addition, we demonstrate that commonly used synthetic crowding agents like Ficoll 70 are not suitable to mimic the intracellular environment due to their incapability to simulate biologically important weak attractive interactions.


Assuntos
Substâncias Macromoleculares/química , Peptidilprolil Isomerase/química , Dobramento de Proteína , Sequência de Aminoácidos , Animais , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Oócitos/enzimologia , Peptidilprolil Isomerase/genética , Proteínas , Especificidade por Substrato , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...