Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3683, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760787

RESUMO

The critical brain hypothesis states that biological neuronal networks, because of their structural and functional architecture, work near phase transitions for optimal response to internal and external inputs. Criticality thus provides optimal function and behavioral capabilities. We test this hypothesis by examining the influence of brain injury (strokes) on the criticality of neural dynamics estimated at the level of single participants using directly measured individual structural connectomes and whole-brain models. Lesions engender a sub-critical state that recovers over time in parallel with behavior. The improvement of criticality is associated with the re-modeling of specific white-matter connections. We show that personalized whole-brain dynamical models poised at criticality track neural dynamics, alteration post-stroke, and behavior at the level of single participants.


Assuntos
Conectoma , Acidente Vascular Cerebral , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Modelos Neurológicos , Neurônios/fisiologia , Acidente Vascular Cerebral/diagnóstico por imagem
2.
Sci Rep ; 8(1): 15682, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356174

RESUMO

Understanding the relationship between large-scale structural and functional brain networks remains a crucial issue in modern neuroscience. Recently, there has been growing interest in investigating the role of homeostatic plasticity mechanisms, across different spatiotemporal scales, in regulating network activity and brain functioning against a wide range of environmental conditions and brain states (e.g., during learning, development, ageing, neurological diseases). In the present study, we investigate how the inclusion of homeostatic plasticity in a stochastic whole-brain model, implemented as a normalization of the incoming node's excitatory input, affects the macroscopic activity during rest and the formation of functional networks. Importantly, we address the structure-function relationship both at the group and individual-based levels. In this work, we show that normalization of the node's excitatory input improves the correspondence between simulated neural patterns of the model and various brain functional data. Indeed, we find that the best match is achieved when the model control parameter is in its critical value and that normalization minimizes both the variability of the critical points and neuronal activity patterns among subjects. Therefore, our results suggest that the inclusion of homeostatic principles lead to more realistic brain activity consistent with the hallmarks of criticality. Our theoretical framework open new perspectives in personalized brain modeling with potential applications to investigate the deviation from criticality due to structural lesions (e.g. stroke) or brain disorders.


Assuntos
Encéfalo/fisiologia , Homeostase/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Mapeamento Encefálico , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Neurônios/fisiologia , Descanso/fisiologia , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA