Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450758

RESUMO

BACKGROUND: The therapeutic potential of relaxin for heart failure and renal disease in clinical trials is hampered by the short half-life of serelaxin. Optimization of fatty acid-acetylated single-chain peptide analogues of relaxin culminated in the design and synthesis of R2R01, a potent and selective RXFP1 agonist with subcutaneous bioavailability and extended half-life. EXPERIMENTAL APPROACH: Cellular assays and pharmacological models of RXFP1 activation were used to validate the potency and selectivity of R2R01. Increased renal blood flow was used as a translational marker of R2R01 activity. Human mastocytes (LAD2 cells) were used to study potential pseudo-allergic reactions and CD4+ T-cells to study immunogenicity. The pharmacokinetics of R2R01 were characterized in rats and minipigs. KEY RESULTS: In vitro, R2R01 had comparable potency and efficacy to relaxin as an agonist for human RXFP1. In vivo, subcutaneous administration of R2R01 increased heart rate and renal blood flow in normotensive and hypertensive rat and did not show evidence of tachyphylaxis. R2R01 also increased nipple length in rats, used as a chronic model of RXFP1 engagement. Pharmacokinetic studies showed that R2R01 has a significantly extended terminal half-life. The in vitro assays with LAD2 cells and CD4+ T-cells showed that R2R01 had low potential for pseudo-allergic and immunogenic reactions, respectively. CONCLUSION AND IMPLICATIONS: R2R01 is a potent RXFP1 agonist with an extended half-life that increases renal blood flow in various settings including normotensive and hypertensive conditions. The preclinical efficacy and safety data supported clinical development of R2R01 as a potential new therapy for renal and cardiovascular diseases.

2.
Sci Rep ; 12(1): 20435, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443381

RESUMO

Despite beneficial effects in acute heart failure, the full therapeutic potential of recombinant relaxin-2 has been hampered by its short half-life and the need for intravenous administration limiting its use to intensive care units. A multiparametric optimization of the relaxin B-chain led to the identification of single chain lipidated peptide agonists of RXFP1 like SA10SC-RLX with subcutaneous bioavailability and extended half-life. SA10SC-RLX has sub nanomolar activity on cells expressing human RXFP1 and molecular modeling associated with the study of different RXFP1 mutants was used to decipher the mechanism of SA10SC-RLX interaction with RXFP1. Telemetry was performed in rat where SA10SC-RLX was able to engage RXFP1 after subcutaneous administration without tachyphylaxis after repeated dosing. Renal blood flow was then used as a translational model to evaluate RXFP1 activation. SA10SC-RLX increased renal blood flow and decreased renal vascular resistance in rats as reported for relaxin in humans. In conclusion, SA10SC-RLX mimics relaxin activity in in vitro and in vivo models of acute RXFP1 engagement. SA10SC-RLX represents a new class of long-lasting RXFP1 agonist, suitable for once daily subcutaneous administration in patients and potentially paving the way to new treatments for chronic fibrotic and cardiovascular diseases.


Assuntos
Relaxina , Humanos , Animais , Ratos , Relaxina/farmacologia , Meia-Vida , Circulação Renal , Modelos Moleculares , Administração Intravenosa , Receptores de Peptídeos/genética , Receptores Acoplados a Proteínas G
3.
PLoS One ; 17(1): e0257929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030174

RESUMO

AIM: Heart failure with preserved ejection fraction (HFpEF) is a major cause of death worldwide with no approved treatment. Left ventricular hypertrophy (LVH) and diastolic dysfunction represent the structural and functional components of HFpEF, respectively. Endothelial dysfunction is prevalent in HFpEF and predicts cardiovascular events. We investigated if SAR247799, a G-protein-biased sphingosine-1-phosphate receptor 1 (S1P1) agonist with endothelial-protective properties, could improve cardiac and renal functions in a rat model of metabolic syndrome LVH and diastolic function. METHODS: 31- and 65-week-old obese ZSF1 (Ob-ZSF1) rats, representing adult and aged animals with LVH and diastolic dysfunction, were randomized to a chow diet containing 0.025% (w/w) of SAR247799, or control (CTRL) chow for 4 weeks. Age-matched lean ZSF1 (Le-ZSF1) rats were fed control chow. Echocardiography, telemetry, biochemical and histological analysis were performed to evaluate the effect of SAR247799. RESULTS: Echocardiography revealed that Ob-ZSF1 rats, in contrast to Le-ZSF1 rats, developed progressive diastolic dysfunction and cardiac hypertrophy with age. SAR247799 blunted the progression of diastolic dysfunction in adult and aged animals: in adult animals E/e' was evaluated at 21.8 ± 1.4 for Ob-ZSF1-CTRL, 19.5 ± 1.2 for Ob-ZSF1-SAR247799 p<0.01, and 19.5 ± 2.3 for Le-ZSF1-CTRL (median ± IQR). In aged animals E/e' was evaluated at 23.15 ± 4.45 for Ob-ZSF1-CTRL, 19.5 ± 5 for Ob-ZSF1-SAR247799 p<0.01, and 16.69 ± 1.7 for Le-ZSF1-CTRL, p<0.01 (median ± IQR). In aged animals, SAR247799 reduced cardiac hypertrophy (g/mm mean ± SEM of heart weight/tibia length 0.053 ± 0.001 for Ob-ZSF1-CTRL vs 0.046 ± 0.002 for Ob-ZSF1-SAR247799 p<0.01, Le-ZSF1-CTRL 0.035 ± 0.001) and myocardial perivascular collagen content (p<0.001), independently of any changes in microvascular density. In adult animals, SAR247799 improved endothelial function as assessed by the very low frequency bands of systolic blood pressure variability (mean ± SEM 67.8 ± 3.41 for Ob-ZSF1-CTRL 55.8 ± 4.27 or Ob-ZSF1-SAR247799, p<0.05 and 57.3 ± 1.82 Le-ZSF1-CTRL), independently of any modification of arterial blood pressure. In aged animals, SAR247799 reduced urinary protein/creatinine ratio, an index of glomerular injury, (10.3 ± 0.621 vs 8.17 ± 0.231 for Ob-ZSF1-CTRL vs Ob-ZSF1-SAR247799, respectively, p<0.05 and 0.294 ± 0.029 for Le-ZSF1-CTRL, mean ± SEM) and the fractional excretion of electrolytes. Circulating lymphocytes were not decreased by SAR247799, confirming lack of S1P1 desensitization. CONCLUSIONS: These experimental findings suggest that S1P1 activation with SAR247799 may be considered as a new therapeutic approach for LVH and diastolic dysfunction, major components of HFpEF.


Assuntos
Síndrome Metabólica
4.
Peptides ; 142: 170568, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33965442

RESUMO

There is growing evidence that apelin plays a role in the regulation of the cardiovascular system by increasing myocardial contractility and acting as a vasodilator. However, it remains unclear whether apelin improves cardiac contractility in a load-dependent or independent manner in pathological conditions. For this purpose we investigated the cardiovascular effects of apelin in α-actin transgenic mice (mActin-Tg mice), a model of cardiomyopathy. [Pyr1]apelin-13 was administered by continuous infusion at 2 mg/kg/d for 3 weeks. Effects on cardiac function were determined by echocardiography and a Pressure-Volume (PV) analysis. mActin-Tg mice showed a dilated cardiomyopathy (DCM) phenotype similar to that encountered in patients expressing the same mutation. Compared to WT animals, mActin-Tg mice displayed cardiac systolic impairment [significant decrease in ejection fraction (EF), cardiac output (CO), and stroke volume (SV)] associated with cardiac ventricular dilation and diastolic dysfunction, characterized by an impairment in mitral flow velocity (E/A) and in deceleration time (DT). Load-independent myocardial contractility was strongly decreased in mActin-Tg mice while total peripheral vascular resistance (TPR) was significantly increased. As compared to vehicle-treated animals, a 3-week treatment with [Pyr1]apelin-13 significantly improved EF%, SV, E/A, DT and corrected TPR, with no significant effect on load-independent indices of myocardial contractility, blood pressure and heart rate. In conclusion [Pyr1]apelin-13 displayed no intrinsic contractile effect but improved cardiac function in dilated cardiomyopathy mainly by reducing peripheral vascular resistance, with no change in blood pressure.


Assuntos
Apelina/farmacologia , Cardiomiopatia Dilatada/tratamento farmacológico , Doenças Vasculares Periféricas/prevenção & controle , Resistência Vascular , Vasodilatação , Animais , Pressão Sanguínea , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Frequência Cardíaca , Humanos , Camundongos , Camundongos Transgênicos , Doenças Vasculares Periféricas/patologia , Volume Sistólico
5.
J Med Chem ; 64(4): 2139-2150, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33555858

RESUMO

The insulin-like peptide human relaxin-2 was identified as a hormone that, among other biological functions, mediates the hemodynamic changes occurring during pregnancy. Recombinant relaxin-2 (serelaxin) has shown beneficial effects in acute heart failure, but its full therapeutic potential has been hampered by its short half-life and the need for intravenous administration limiting its use to intensive care units. In this study, we report the development of long-acting potent single-chain relaxin peptide mimetics. Modifications in the B-chain of relaxin, such as the introduction of specific mutations and the trimming of the sequence to an optimal size, resulted in potent, structurally simplified peptide agonists of the relaxin receptor Relaxin Family Peptide Receptor 1 (RXFP1) (e.g., 54). Introduction of suitable spacers and fatty acids led to the identification of single-chain lipidated peptide agonists of RXFP1, with sub-nanomolar activity, high subcutaneous bioavailability, extended half-lives, and in vivo efficacy (e.g., 64).


Assuntos
Lipopeptídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Relaxina/análogos & derivados , Relaxina/farmacologia , Sequência de Aminoácidos , Animais , Doenças Cardiovasculares , Linhagem Celular Tumoral , Células HEK293 , Meia-Vida , Humanos , Lipopeptídeos/genética , Lipopeptídeos/farmacocinética , Masculino , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Subunidades Proteicas , Ratos Sprague-Dawley , Relaxina/genética , Relação Estrutura-Atividade
6.
Cardiovasc Res ; 116(2): 329-338, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31038167

RESUMO

AIMS: Despite improvements in patient identification and management, heart failure (HF) remains a major public health burden and an important clinical challenge. A variety of animal and human studies have provided evidence suggesting a central role of calcium/calmodulin-dependent protein kinase II (CaMKII) in the development of pathological cardiac remodelling and HF. Here, we describe a new potent, selective, and orally available CaMKII inhibitor. METHODS AND RESULTS: Chemical optimization led to the identification of RA306 as a selective CaMKII inhibitor. This compound was found potent on the cardiac CaMKII isoforms delta and gamma (IC50 in the 10 nM range), with pharmacokinetic properties allowing oral administration in animal models of HF. RA306 was administered to diseased mice carrying a mutation in alpha-actin that is responsible for dilated cardiomyopathy (DCM) in humans. In two separate studies, RA306 was orally administered at 30 mg/kg either for 2 weeks (twice a day) or for 2 months (once a day). Echocardiography monitoring showed that RA306 significantly improved cardiac function (ejection fraction and cardiac output) as compared to vehicle. These disease modifying effects of RA306 were associated with inhibition of cardiac phosphorylation of phospholamban (PLN) at threonine-17, indicating reduced cardiac CaMKII activity. CONCLUSION: This work supports the feasibility of identifying potent orally available CaMKII inhibitors suitable for clinical use to treat heart disease.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Cardiomiopatia Dilatada/tratamento farmacológico , Morfolinas/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Volume Sistólico/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Actinas/genética , Administração Oral , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatia Dilatada/enzimologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Camundongos Transgênicos , Morfolinas/farmacocinética , Mutação , Miócitos Cardíacos/enzimologia , Fosforilação , Inibidores de Proteínas Quinases/farmacocinética , Ratos , Recuperação de Função Fisiológica
7.
Toxicol Sci ; 121(2): 417-27, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21436127

RESUMO

During 2007-2008, serious adverse events were reported following iv administration of certain batches of commercially available heparin in humans. Anaphylactoid reactions with acute hypotension were the hallmark of these cases. Subsequently, it was shown that a contaminant, oversulfated chondroitin sulfate (OSCS), was responsible for these adverse events. The present study was undertaken to further elucidate the risks related to OSCS-contaminated heparin preparations. Using an anesthetized rat hemodynamic model, marked diastolic blood pressure drops were induced with a single iv injection of a contaminated heparin (1000 IU/kg; 34% wt/wt OSCS). OSCS alone (0.8 and 20 mg/kg) or in combination (0.8-1.7 mg/kg) with uncontaminated heparin produced a similar hypotensive effect, whereas heparin spiked with 0.2 or 0.4 mg/kg OSCS produced no hemodynamic changes. In conscious rats, acute hypotensive effects were seen following single iv administration of OSCS-spiked heparin (1.7 or 3.0 mg/kg). Conversely, no hemodynamic effects were observed with same doses when administered sc. Pretreatment with a bradykinin-2 receptor antagonist (HOE140) fully abolished the hypotensive response after iv OSCS (1.7 mg/kg) administration, whereas pretreatment with the histamine (H1) receptor antagonist cetirizine did not. In vitro, OSCS (25 and 250 µg/ml) induced a robust, dose-related increase in kallikrein activity in rat and human plasma with a lower amplitude of response in dog and pig. The data suggest that the adverse events associated with OSCS-contaminated heparin are dependent upon the concentration of contaminant and its route of administration. Furthermore, the kallikrein-kinin system plays a pivotal role in the initiation of OSCS-related vascular effects.


Assuntos
Sulfatos de Condroitina/administração & dosagem , Contaminação de Medicamentos , Heparina/administração & dosagem , Sistema Calicreína-Cinina/efeitos dos fármacos , Anafilaxia/induzido quimicamente , Animais , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Sulfatos de Condroitina/sangue , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Feminino , Heparina/sangue , Humanos , Hipotensão/induzido quimicamente , Masculino , Ratos , Ratos Sprague-Dawley , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...