Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725149

RESUMO

PURPOSE: To accelerate whole-brain quantitative T 2 $$ {\mathrm{T}}_2 $$ mapping in preclinical imaging setting. METHODS: A three-dimensional (3D) multi-echo spin echo sequence was highly undersampled with a variable density Poisson distribution to reduce the acquisition time. Advanced iterative reconstruction based on linear subspace constraints was employed to recover high-quality raw images. Different subspaces, generated using exponential or extended-phase graph (EPG) simulations or from low-resolution calibration images, were compared. The subspace dimension was investigated in terms of T 2 $$ {\mathrm{T}}_2 $$ precision. The method was validated on a phantom containing a wide range of T 2 $$ {\mathrm{T}}_2 $$ and was then applied to monitor metastasis growth in the mouse brain at 4.7T. Image quality and T 2 $$ {\mathrm{T}}_2 $$ estimation were assessed for 3 acceleration factors (6/8/10). RESULTS: The EPG-based dictionary gave robust estimations of a large range of T 2 $$ {\mathrm{T}}_2 $$ . A subspace dimension of 6 was the best compromise between T 2 $$ {\mathrm{T}}_2 $$ precision and image quality. Combining the subspace constrained reconstruction with a highly undersampled dataset enabled the acquisition of whole-brain T 2 $$ {\mathrm{T}}_2 $$ maps, the detection and the monitoring of metastasis growth of less than 500 µ m 3 $$ \mu {\mathrm{m}}^3 $$ . CONCLUSION: Subspace-based reconstruction is suitable for 3D T 2 $$ {\mathrm{T}}_2 $$ mapping. This method can be used to reach an acceleration factor up to 8, corresponding to an acquisition time of 25 min for an isotropic 3D acquisition of 156 µ $$ \mu $$ m on the mouse brain, used here for monitoring metastases growth.

2.
J Neurosci ; 43(47): 7946-7957, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37739797

RESUMO

Perception has been proposed to result from the integration of feedforward sensory signals with internally generated feedback signals. Feedback signals are believed to play an important role in driving false percepts, that is, seeing things that are not actually there. Feedforward and feedback influences on perception can be studied using layer-specific fMRI, which we used here to interrogate neural activity underlying high-confidence false percepts while healthy human participants (N = 25, male and female) performed a perceptual orientation discrimination task. Auditory cues implicitly signaled the most likely upcoming orientation (referred to here as expectations). These expectations induced orientation-specific templates in the deep and superficial layers of V2, without affecting perception. In contrast, the orientation of falsely perceived stimuli with high confidence was reflected in the middle input layers of V2, suggesting a feedforward signal contributing to false percepts. The prevalence of high-confidence false percepts was related to everyday hallucination severity in a separate online sample (N = 100), suggesting a possible link with abnormal perceptual experiences. These results reveal a potential feedforward mechanism underlying false percepts, reflected by spontaneous stimulus-like activity in the input layers of the visual cortex, independent of top-down signals reflecting cued orientations.SIGNIFICANCE STATEMENT False percepts have been suggested to arise through excessive feedback signals. However, feedforward contributions to false percepts have remained largely understudied. Laminar fMRI has been shown to be useful in distinguishing feedforward from feedback activity as it allows the imaging of different cortical layers. In the present study we demonstrate that although cued orientations are encoded in the feedback layers of the visual cortex, the content of the false percepts are encoded in the feedforward layers and did not rely on these cued orientations. This shows that false percepts can in principle emerge from random feedforward signals in the visual cortex, with possible implications for disorders hallmarked by hallucinations like schizophrenia and Parkinson's disease.


Assuntos
Sinais (Psicologia) , Córtex Visual , Humanos , Masculino , Feminino , Motivação , Imageamento por Ressonância Magnética , Retroalimentação , Percepção Visual
3.
J Neurosci Methods ; 398: 109950, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37598941

RESUMO

BACKGROUND: Consistent noise variance across data points (i.e. homoscedasticity) is required to ensure the validity of statistical analyses of MRI data conducted using linear regression methods. However, head motion leads to degradation of image quality, introducing noise heteroscedasticity into ordinary-least square analyses. NEW METHOD: The recently introduced QUIQI method restores noise homoscedasticity by means of weighted least square analyses in which the weights, specific for each dataset of an analysis, are computed from an index of motion-induced image quality degradation. QUIQI was first demonstrated in the context of brain maps of the MRI parameter R2 * , which were computed from a single set of images with variable echo time. Here, we extend this framework to quantitative maps of the MRI parameters R1, R2 * , and MTsat, computed from multiple sets of images. RESULTS: QUIQI restores homoscedasticity in analyses of quantitative MRI data computed from multiple scans. QUIQI allows for optimization of the noise model by using metrics quantifying heteroscedasticity and free energy. COMPARISON WITH EXISTING METHODS: QUIQI restores homoscedasticity more effectively than insertion of an image quality index in the analysis design and yields higher sensitivity than simply removing the datasets most corrupted by head motion from the analysis. CONCLUSION: QUIQI provides an optimal approach to group-wise analyses of a range of quantitative MRI parameter maps that is robust to inherent homoscedasticity.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Movimento (Física)
4.
Neuroimage ; 279: 120294, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517572

RESUMO

Geometric distortion is a major limiting factor for spatial specificity in high-resolution fMRI using EPI readouts and is exacerbated at higher field strengths due to increased B0 field inhomogeneity. Prominent correction schemes are based on B0 field-mapping or acquiring reverse phase-encoded (reversed-PE) data. However, to date, comparisons of these techniques in the context of fMRI have only been performed on 2DEPI data, either at lower field or lower resolution. In this study, we investigate distortion compensation in the context of sub-millimetre 3DEPI data at 7T. B0 field-mapping and reversed-PE distortion correction techniques were applied to both partial coverage BOLD-weighted and whole brain MT-weighted 3DEPI data with matched distortion. Qualitative assessment showed overall improvement in cortical alignment for both correction techniques in both 3DEPI fMRI and whole-brain MT-3DEPI datasets. The distortion-corrected MT-3DEPI images were quantitatively evaluated by comparing cortical alignment with an anatomical reference using dice coefficient (DC) and correlation ratio (CR) measures. These showed that B0 field-mapping and reversed-PE methods both improved correspondence between the MT-3DEPI and anatomical data, with more substantial improvements consistently obtained using the reversed-PE approach. Regional analyses demonstrated that the largest benefit of distortion correction, and in particular of the reversed-PE approach, occurred in frontal and temporal regions where susceptibility-induced distortions are known to be greatest, but had not led to complete signal dropout. In conclusion, distortion correction based on reversed-PE data has shown the greater capacity for achieving faithful alignment with anatomical data in the context of high-resolution fMRI at 7T using 3DEPI.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Artefatos
5.
Magn Reson Med ; 89(1): 128-143, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36161672

RESUMO

PURPOSE: The effective transverse relaxation rate ( R 2 * $$ {\mathrm{R}}_2^{\ast } $$ ) is influenced by biological features that make it a useful means of probing brain microstructure. However, confounding factors such as dependence on flip angle (α) and fiber orientation with respect to the main field ( θ $$ \uptheta $$ ) complicate interpretation. The α- and θ $$ \uptheta $$ -dependence stem from the existence of multiple sub-voxel micro-environments (e.g., myelin and non-myelin water compartments). Ordinarily, it is challenging to quantify these sub-compartments; therefore, neuroscientific studies commonly make the simplifying assumption of a mono-exponential decay obtaining a single R 2 * $$ {\mathrm{R}}_2^{\ast } $$ estimate per voxel. In this work, we investigated how the multi-compartment nature of tissue microstructure affects single compartment R 2 * $$ {\mathrm{R}}_2^{\ast } $$ estimates. METHODS: We used 2-pool (myelin and non-myelin water) simulations to characterize the bias in single compartment R 2 * $$ {\mathrm{R}}_2^{\ast } $$ estimates. Based on our numeric observations, we introduced a linear model that partitions R 2 * $$ {\mathrm{R}}_2^{\ast } $$ into α-dependent and α-independent components and validated this in vivo at 7T. We investigated the dependence of both components on the sub-compartment properties and assessed their robustness, orientation dependence, and reproducibility empirically. RESULTS: R 2 * $$ {\mathrm{R}}_2^{\ast } $$ increased with myelin water fraction and residency time leading to a linear dependence on α. We observed excellent agreement between our numeric and empirical results. Furthermore, the α-independent component of the proposed linear model was robust to the choice of α and reduced dependence on fiber orientation, although it suffered from marginally higher noise sensitivity. CONCLUSION: We have demonstrated and validated a simple approach that mitigates flip angle and orientation biases in single-compartment R 2 * $$ {\mathrm{R}}_2^{\ast } $$ estimates.


Assuntos
Imageamento por Ressonância Magnética , Bainha de Mielina , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Bainha de Mielina/química , Encéfalo/diagnóstico por imagem , Água/análise
6.
Magn Reson Med ; 88(1): 280-291, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35313378

RESUMO

PURPOSE: Inter-scan motion is a substantial source of error in R1 estimation methods based on multiple volumes, for example, variable flip angle (VFA), and can be expected to increase at 7T where B1 fields are more inhomogeneous. The established correction scheme does not translate to 7T since it requires a body coil reference. Here we introduce two alternatives that outperform the established method. Since they compute relative sensitivities they do not require body coil images. THEORY: The proposed methods use coil-combined magnitude images to obtain the relative coil sensitivities. The first method efficiently computes the relative sensitivities via a simple ratio; the second by fitting a more sophisticated generative model. METHODS: R1 maps were computed using the VFA approach. Multiple datasets were acquired at 3T and 7T, with and without motion between the acquisition of the VFA volumes. R1 maps were constructed without correction, with the proposed corrections, and (at 3T) with the previously established correction scheme. The effect of the greater inhomogeneity in the transmit field at 7T was also explored by acquiring B1+ maps at each position. RESULTS: At 3T, the proposed methods outperform the baseline method. Inter-scan motion artifacts were also reduced at 7T. However, at 7T reproducibility only converged on that of the no motion condition if position-specific transmit field effects were also incorporated. CONCLUSION: The proposed methods simplify inter-scan motion correction of R1 maps and are applicable at both 3T and 7T, where a body coil is typically not available. The open-source code for all methods is made publicly available.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Cintilografia , Reprodutibilidade dos Testes
7.
Hum Brain Mapp ; 43(6): 1973-1983, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35112434

RESUMO

Motion during the acquisition of magnetic resonance imaging (MRI) data degrades image quality, hindering our capacity to characterise disease in patient populations. Quality control procedures allow the exclusion of the most affected images from analysis. However, the criterion for exclusion is difficult to determine objectively and exclusion can lead to a suboptimal compromise between image quality and sample size. We provide an alternative, data-driven solution that assigns weights to each image, computed from an index of image quality using restricted maximum likelihood. We illustrate this method through the analysis of quantitative MRI data. The proposed method restores the validity of statistical tests, and performs near optimally in all brain regions, despite local effects of head motion. This method is amenable to the analysis of a broad type of MRI data and can accommodate any measure of image quality.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Movimento (Física) , Controle de Qualidade , Tamanho da Amostra
8.
Invest Radiol ; 57(6): 366-378, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030106

RESUMO

OBJECTIVES: The magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) sequence provides quantitative T1 maps in addition to high-contrast morphological images. Advanced acceleration techniques such as compressed sensing (CS) allow its acquisition time to be compatible with clinical applications. To consider its routine use in future neuroimaging protocols, the repeatability of the segmented brain structures was evaluated and compared with the standard morphological sequence (magnetization-prepared rapid gradient echo [MPRAGE]). The repeatability of the T1 measurements was also assessed. MATERIALS AND METHODS: Thirteen healthy volunteers were scanned either 3 or 4 times at several days of interval, on a 3 T clinical scanner, with the 2 sequences (CS-MP2RAGE and MPRAGE), set with the same spatial resolution (0.8-mm isotropic) and scan duration (6 minutes 21 seconds). The reconstruction time of the CS-MP2RAGE outputs (including the 2 echo images, the MP2RAGE image, and the T1 map) was 3 minutes 33 seconds, using an open-source in-house algorithm implemented in the Gadgetron framework.Both precision and variability of volume measurements obtained from CAT12 and VolBrain were assessed. The T1 accuracy and repeatability were measured on phantoms and on humans and were compared with literature.Volumes obtained from the CS-MP2RAGE and the MPRAGE images were compared using Student t tests (P < 0.05 was considered significant). RESULTS: The CS-MP2RAGE acquisition provided morphological images of the same quality and higher contrasts than the standard MPRAGE images. Similar intravolunteer variabilities were obtained with the CS-MP2RAGE and the MPRAGE segmentations. In addition, high-resolution T1 maps were obtained from the CS-MP2RAGE. T1 times of white and gray matters and several deep gray nuclei are consistent with the literature and show very low variability (<1%). CONCLUSIONS: The CS-MP2RAGE can be used in future protocols to rapidly obtain morphological images and quantitative T1 maps in 3-dimensions while maintaining high repeatability in volumetry and relaxation times.


Assuntos
Substância Cinzenta , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem
9.
Magn Reson Med ; 86(2): 693-708, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33645814

RESUMO

PURPOSE: The variable flip angle (VFA) approach to T1 mapping assumes perfectly spoiled transverse magnetisation at the end of each repetition time (TR). Despite radiofrequency (RF) and gradient spoiling, this condition is rarely met, leading to erroneous T1 estimates ( T1app ). Theoretical corrections can be applied but make assumptions about tissue properties, for example, a global T2 time. Here, we investigate the effect of imperfect spoiling at 7T and the interaction between the RF and gradient spoiling conditions, additionally accounting for diffusion. We provide guidance on the optimal approach to maximise the accuracy of the T1 estimate in the context of 3D multi-echo acquisitions. METHODS: The impact of the spoiling regime was investigated through numerical simulations, phantom and invivo experiments. RESULTS: The predicted dependence of T1app on tissue properties, system settings, and spoiling conditions was observed in both phantom and in vivo experiments. Diffusion effects modulated the dependence of T1app on both B1+ efficiency and T2 times. CONCLUSION: Error in T1app can be minimized by using an RF spoiling increment and gradient spoiler moment combination that minimizes T2 -dependence and safeguards image quality. Although the diffusion effect was comparatively small at 7T, correction factors accounting for this effect are recommended.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Ondas de Rádio , Reprodutibilidade dos Testes
10.
PLoS Biol ; 18(12): e3001023, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33284791

RESUMO

The way we perceive the world is strongly influenced by our expectations. In line with this, much recent research has revealed that prior expectations strongly modulate sensory processing. However, the neural circuitry through which the brain integrates external sensory inputs with internal expectation signals remains unknown. In order to understand the computational architecture of the cortex, we need to investigate the way these signals flow through the cortical layers. This is crucial because the different cortical layers have distinct intra- and interregional connectivity patterns, and therefore determining which layers are involved in a cortical computation can inform us on the sources and targets of these signals. Here, we used ultra-high field (7T) functional magnetic resonance imaging (fMRI) to reveal that prior expectations evoke stimulus-specific activity selectively in the deep layers of the primary visual cortex (V1). These findings are in line with predictive processing theories proposing that neurons in the deep cortical layers represent perceptual hypotheses and thereby shed light on the computational architecture of cortex.


Assuntos
Motivação/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa/métodos , Córtex Visual/metabolismo
11.
Magn Reson Med ; 82(6): 2003-2015, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31321823

RESUMO

PURPOSE: Quantitative MRI applications, such as mapping the T1 time of tissue, puts high demands on the accuracy and precision of transmit field ( B1+ ) estimation. A candidate approach to satisfy these requirements exploits the difference in phase induced by the Bloch-Siegert frequency shift (BSS) of 2 acquisitions with opposite off-resonance frequency radiofrequency pulses. Interleaving these radiofrequency pulses ensures robustness to motion and scanner drifts; however, here we demonstrate that doing so also introduces a bias in the B1+ estimates. THEORY AND METHODS: It is shown here by means of simulation and experiments that the amplitude of the error depends on MR pulse sequence parameters, such as repetition time and radiofrequency spoiling increment, but more problematically, on the intrinsic properties, T1 and T2 , of the investigated tissue. To solve these problems, a new approach to BSS-based B1+ estimation that uses a multi-echo acquisition and a general linear model to estimate the correct BSS-induced phase is presented. RESULTS: In line with simulations, phantom and in vivo experiments confirmed that the general linear model-based method removed the dependency on tissue properties and pulse sequence settings. CONCLUSION: The general linear model-based method is recommended as a more accurate approach to BSS-based B1+ mapping.


Assuntos
Imagem Ecoplanar , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Adulto , Algoritmos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Modelos Lineares , Masculino , Modelos Teóricos , Movimento (Física) , Imagens de Fantasmas , Ondas de Rádio , Reprodutibilidade dos Testes
12.
Data Brief ; 25: 104132, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31297422

RESUMO

The hMRI toolbox is an open-source toolbox for the calculation of quantitative MRI parameter maps from a series of weighted imaging data, and optionally additional calibration data. The multi-parameter mapping (MPM) protocol, incorporating calibration data to correct for spatial variation in the scanner's transmit and receive fields, is the most complete protocol that can be handled by the toolbox. Here we present a dataset acquired with such a full MPM protocol, which is made freely available to be used as a tutorial by following instructions provided on the associated toolbox wiki pages, which can be found at http://hMRI.info, and following the theory described in: hMRI - A toolbox for quantitative MRI in neuroscience and clinical research [1].

13.
Neuroimage ; 200: 174-190, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31226497

RESUMO

Dynamic Causal Modelling (DCM) is the predominant method for inferring effective connectivity from neuroimaging data. In the 15 years since its introduction, the neural models and statistical routines in DCM have developed in parallel, driven by the needs of researchers in cognitive and clinical neuroscience. In this guide, we step through an exemplar fMRI analysis in detail, reviewing the current implementation of DCM and demonstrating recent developments in group-level connectivity analysis. In the appendices, we detail the theory underlying DCM and the assumptions (i.e., priors) in the models. In the first part of the guide (current paper), we focus on issues specific to DCM for fMRI. This is accompanied by all the necessary data and instructions to reproduce the analyses using the SPM software. In the second part (in a companion paper), we move from subject-level to group-level modelling using the Parametric Empirical Bayes framework, and illustrate how to test for commonalities and differences in effective connectivity across subjects, based on imaging data from any modality.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Projetos de Pesquisa , Adulto , Encéfalo/diagnóstico por imagem , Conjuntos de Dados como Assunto , Guias como Assunto , Humanos
14.
Hum Brain Mapp ; 39(10): 3884-3897, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885101

RESUMO

Rapid imaging techniques are increasingly used in functional MRI studies because they allow a greater number of samples to be acquired per unit time, thereby increasing statistical power. However, temporal correlations limit the increase in functional sensitivity and must be accurately accounted for to control the false-positive rate. A common approach to accounting for temporal correlations is to whiten the data prior to estimating fMRI model parameters. Models of white noise plus a first-order autoregressive process have proven sufficient for conventional imaging studies, but more elaborate models are required for rapidly sampled data. Here we show that when the "FAST" model implemented in SPM is used with a well-controlled number of parameters, it can successfully prewhiten 80% of grey matter voxels even with volume repetition times as short as 0.35 s. We further show that the temporal signal-to-noise ratio (tSNR), which has conventionally been used to assess the relative functional sensitivity of competing imaging approaches, can be augmented to account for the temporal correlations in the time series. This amounts to computing the t-score testing for the mean signal. We show in a visual perception task that unlike the tSNR weighted by the number of samples, the t-score measure is directly related to the t-score testing for activation when the temporal correlations are correctly modeled. This score affords a more accurate means of evaluating the functional sensitivity of different data acquisition options.


Assuntos
Encéfalo/fisiologia , Interpretação Estatística de Dados , Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Percepção Visual/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Neuroimagem Funcional/normas , Humanos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade
15.
MAGMA ; 30(2): 203-213, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27822656

RESUMO

OBJECTIVE: Magnetic resonance elastography (MRE) requires substantial data processing based on phase image reconstruction, wave enhancement, and inverse problem solving. The objective of this study is to propose a new, fast MRE method based on MR raw data processing, particularly adapted to applications requiring fast MRE measurement or high elastogram update rate. MATERIALS AND METHODS: The proposed method allows measuring tissue elasticity directly from raw data without prior phase image reconstruction and without phase unwrapping. Experimental feasibility is assessed both in a gelatin phantom and in the liver of a porcine model in vivo. Elastograms are reconstructed with the raw MRE method and compared to those obtained using conventional MRE. In a third experiment, changes in elasticity are monitored in real-time in a gelatin phantom during its solidification by using both conventional MRE and raw MRE. RESULTS: The raw MRE method shows promising results by providing similar elasticity values to the ones obtained with conventional MRE methods while decreasing the number of processing steps and circumventing the delicate step of phase unwrapping. Limitations of the proposed method are the influence of the magnitude on the elastogram and the requirement for a minimum number of phase offsets. CONCLUSION: This study demonstrates the feasibility of directly reconstructing elastograms from raw data.


Assuntos
Técnicas de Imagem por Elasticidade , Processamento de Imagem Assistida por Computador , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Algoritmos , Animais , Imageamento por Ressonância Magnética , Modelos Estatísticos , Suínos
16.
Phys Med Biol ; 61(13): 5000-19, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27300107

RESUMO

Quantitative and accurate measurement of in vivo mechanical properties using dynamic elastography has been the scope of many research efforts over the past two decades. Most of the shear-wave-based inverse approaches for magnetic resonance elastography (MRE) make the assumption of isotropic viscoelasticity. In this paper, we propose a quantitative gradient method for inversion of the shear wave equation in anisotropic media derived from a full waveform description using analytical viscoelastic Green formalism and automatic differentiation. The abilities and performances of the proposed identification method are first evaluated on numerical phantoms calculated in a transversely isotropic medium, and subsequently on experimental MRE data measured on an isotropic hydrogel phantom, on an anisotropic cryogel phantom and on an ex vivo fibrous muscle. The experiments are carried out by coupling circular shear wave profiles generated by acoustic radiation force and MRE acquisition of the wave front. Shear modulus values obtained by our MRE method are compared to those obtained by rheometry in the isotropic hydrogel phantom, and are found to be in good agreement despite non-overlapping frequency ranges. Both the cryogel and the ex vivo muscle are found to be anisotropic. Stiffness values in the longitudinal direction are found to be 1.8 times and 1.9 times higher than those in the transverse direction for the cryogel and the muscle, respectively. The proposed method shows great perspectives and substantial benefits for the in vivo quantitative investigation of complex mechanical properties in fibrous soft tissues.


Assuntos
Tecido Conjuntivo/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Imageamento por Ressonância Magnética/métodos , Músculos/diagnóstico por imagem , Anisotropia , Tecido Conjuntivo/patologia , Elasticidade , Fibrose , Humanos , Músculos/patologia , Imagens de Fantasmas , Viscosidade
17.
Magn Reson Med ; 75(3): 1110-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25846380

RESUMO

PURPOSE: MRI-guided thermal ablations require reliable monitoring methods to ensure complete destruction of the diseased tissue while avoiding damage to the surrounding healthy tissue. Based on the fact that thermal ablations result in substantial changes in biomechanical properties, interventional MR elastography (MRE) dedicated to the monitoring of MR-guided thermal therapies is proposed here. METHODS: Interventional MRE consists of a needle MRE driver, a fast and interactive gradient echo pulse sequence with motion encoding, and an inverse problem solver in real-time. This complete protocol was tested in vivo on swine and the ability to monitor elasticity changes in real-time was assessed in phantom. RESULTS: Thanks to a short repetition time, a reduction of the number of phase-offsets and the use of a sliding window, one refreshed elastogram was provided every 2.56 s for an excitation frequency of 100 Hz. In vivo elastograms of swine liver were successfully provided in real-time during one breath-hold. Changes of elasticity were successfully monitored in a phantom during its gelation with the same elastogram frame rate. CONCLUSION: This study demonstrates the ability of detecting elasticity changes in real-time and providing elastograms in vivo with interventional MRE that could be used for the monitoring of thermal ablations.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Procedimentos Endovasculares/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Animais , Estudos de Viabilidade , Fígado/irrigação sanguínea , Fígado/cirurgia , Modelos Biológicos , Imagens de Fantasmas , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...