Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Trends Cell Biol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719704

RESUMO

Genome-wide association studies (GWASs) provide a key foundation for elucidating the genetic underpinnings of common polygenic diseases. However, these studies have limitations in their ability to assign causality to particular genetic variants, especially those residing in the noncoding genome. Over the past decade, technological and methodological advances in both analytical and empirical prioritization of noncoding variants have enabled the identification of causative variants by leveraging orthogonal functional evidence at increasing scale. In this review, we present an overview of these approaches and describe how this workflow provides the groundwork necessary to move beyond associations toward genetically informed studies on the molecular and cellular mechanisms of polygenic disease.

2.
Elife ; 132024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647535

RESUMO

Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.


Acute myeloid leukemia (or AML for short) is a type of blood cancer characterized by abnormally high production of immature white blood cells. Despite advances in AML treatment, many patients relapse after an initially successful first round of treatment. As a result, understanding the factors contributing to relapse is essential for developing effective treatments for the disease. Like most cancers, AML can evolve because of changes to the DNA sequence in cells that cause them to grow uncontrollably or resist treatment. Alongside these genetic mutations, AML cells also undergo 'epigenetic' changes, where regions of the DNA are modified and genes can be switched on or off without altering the DNA sequence. Previous research has demonstrated that epigenetic changes contribute to the development of AML, however, it was not clear if these changes could also make cells resistant to treatment without acquiring new DNA mutations. Nuno, Azizi et al. addressed this question by analyzing the epigenetic states of AML cells from 26 patients at the time of their diagnosis and after treatment when the disease had relapsed. Analysis revealed that almost half of the patients with AML experienced a relapse without acquiring new DNA mutations. Instead, these AML cells developed specific epigenetic changes that helped them to resist cancer treatment. Moreover, studying individual AML cells from different patients showed that the cells became more epigenetically similar at relapse, suggesting that they converge towards a more treatment-resistant disease. Future experiments will determine exactly how these epigenetic changes lead to treatment resistance. Currently, most of the drugs used to treat AML are either chemotherapies or ones that target specific DNA mutations. The findings of Nuno, Azizi et al. suggest that drugs targeting specific epigenetic changes may be more effective for some patients. Further studies will be needed to determine which patients may benefit and which epigenetic drugs could be useful.


Assuntos
Epigênese Genética , Leucemia Mieloide Aguda , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Humanos , Recidiva , Mutação , Evolução Molecular , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Neoplásicas/patologia
3.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328105

RESUMO

Clustering is a critical step in the analysis of single-cell data, as it enables the discovery and characterization of putative cell types and states. However, most popular clustering tools do not subject clustering results to statistical inference testing, leading to risks of overclustering or underclustering data and often resulting in ineffective identification of cell types with widely differing prevalence. To address these challenges, we present CHOIR (clustering hierarchy optimization by iterative random forests), which applies a framework of random forest classifiers and permutation tests across a hierarchical clustering tree to statistically determine which clusters represent distinct populations. We demonstrate the enhanced performance of CHOIR through extensive benchmarking against 14 existing clustering methods across 100 simulated and 4 real single-cell RNA-seq, ATAC-seq, spatial transcriptomic, and multi-omic datasets. CHOIR can be applied to any single-cell data type and provides a flexible, scalable, and robust solution to the important challenge of identifying biologically relevant cell groupings within heterogeneous single-cell data.

4.
Nat Biotechnol ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537502

RESUMO

Single-cell assay for transposase-accessible chromatin by sequencing (scATAC-seq) has emerged as a powerful tool for dissecting regulatory landscapes and cellular heterogeneity. However, an exploration of systemic biases among scATAC-seq technologies has remained absent. In this study, we benchmark the performance of eight scATAC-seq methods across 47 experiments using human peripheral blood mononuclear cells (PBMCs) as a reference sample and develop PUMATAC, a universal preprocessing pipeline, to handle the various sequencing data formats. Our analyses reveal significant differences in sequencing library complexity and tagmentation specificity, which impact cell-type annotation, genotype demultiplexing, peak calling, differential region accessibility and transcription factor motif enrichment. Our findings underscore the importance of sample extraction, method selection, data processing and total cost of experiments, offering valuable guidance for future research. Finally, our data and analysis pipeline encompasses 169,000 PBMC scATAC-seq profiles and a best practices code repository for scATAC-seq data analysis, which are freely available to extend this benchmarking effort to future protocols.

5.
Nat Commun ; 14(1): 4947, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587197

RESUMO

Assay for Transposase Accessible Chromatin by sequencing (ATAC-seq) accurately depicts the chromatin regulatory state and altered mechanisms guiding gene expression in disease. However, bulk sequencing entangles information from different cell types and obscures cellular heterogeneity. To address this, we developed Cellformer, a deep learning method that deconvolutes bulk ATAC-seq into cell type-specific expression across the whole genome. Cellformer enables cost-effective cell type-specific open chromatin profiling in large cohorts. Applied to 191 bulk samples from 3 brain regions, Cellformer identifies cell type-specific gene regulatory mechanisms involved in resilience to Alzheimer's disease, an uncommon group of cognitively healthy individuals that harbor a high pathological load of Alzheimer's disease. Cell type-resolved chromatin profiling unveils cell type-specific pathways and nominates potential epigenetic mediators underlying resilience that may illuminate therapeutic opportunities to limit the cognitive impact of the disease. Cellformer is freely available to facilitate future investigations using high-throughput bulk ATAC-seq data.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Cromatina/genética , Bioensaio , Ciclo Celular , Epigênese Genética
6.
Front Aging Neurosci ; 14: 1027224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466610

RESUMO

Determining how noncoding genetic variants contribute to neurodegenerative dementias is fundamental to understanding disease pathogenesis, improving patient prognostication, and developing new clinical treatments. Next generation sequencing technologies have produced vast amounts of genomic data on cell type-specific transcription factor binding, gene expression, and three-dimensional chromatin interactions, with the promise of providing key insights into the biological mechanisms underlying disease. However, this data is highly complex, making it challenging for researchers to interpret, assimilate, and dissect. To this end, deep learning has emerged as a powerful tool for genome analysis that can capture the intricate patterns and dependencies within these large datasets. In this review, we organize and discuss the many unique model architectures, development philosophies, and interpretation methods that have emerged in the last few years with a focus on using deep learning to predict the impact of genetic variants on disease pathogenesis. We highlight both broadly-applicable genomic deep learning methods that can be fine-tuned to disease-specific contexts as well as existing neurodegenerative disease research, with an emphasis on Alzheimer's-specific literature. We conclude with an overview of the future of the field at the intersection of neurodegeneration, genomics, and deep learning.

7.
Acta Neuropathol Commun ; 10(1): 158, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333818

RESUMO

Neurodegenerative disorders are characterized by phenotypic changes and hallmark proteopathies. Quantifying these in archival human brain tissues remains indispensable for validating animal models and understanding disease mechanisms. We present a framework for nanometer-scale, spatial proteomics with multiplex ion beam imaging (MIBI) for capturing neuropathological features. MIBI facilitated simultaneous, quantitative imaging of 36 proteins on archival human hippocampus from individuals spanning cognitively normal to dementia. Customized analysis strategies identified cell types and proteopathies in the hippocampus across stages of Alzheimer's disease (AD) neuropathologic change. We show microglia-pathologic tau interactions in hippocampal CA1 subfield in AD dementia. Data driven, sample independent creation of spatial proteomic regions identified persistent neurons in pathologic tau neighborhoods expressing mitochondrial protein MFN2, regardless of cognitive status, suggesting a survival advantage. Our study revealed unique insights from multiplexed imaging and data-driven approaches for neuropathologic analysis and serves broadly as a methodology for spatial proteomic analysis of archival human neuropathology. TEASER: Multiplex Ion beam Imaging enables deep spatial phenotyping of human neuropathology-associated cellular and disease features.


Assuntos
Doença de Alzheimer , Proteômica , Animais , Humanos , Neuropatologia , Doença de Alzheimer/patologia , Hipocampo/patologia , Microglia/patologia , Proteínas tau/metabolismo
8.
Blood Cancer Discov ; 3(4): 346-367, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35532363

RESUMO

The conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is a key step in DNA demethylation that is mediated by ten-eleven translocation (TET) enzymes, which require ascorbate/vitamin C. Here, we report the 5hmC landscape of normal hematopoiesis and identify cell type-specific 5hmC profiles associated with active transcription and chromatin accessibility of key hematopoietic regulators. We utilized CRISPR/Cas9 to model TET2 loss-of-function mutations in primary human hematopoietic stem and progenitor cells (HSPC). Disrupted cells exhibited increased colonies in serial replating, defective erythroid/megakaryocytic differentiation, and in vivo competitive advantage and myeloid skewing coupled with reduction of 5hmC at erythroid-associated gene loci. Azacitidine and ascorbate restored 5hmC abundance and slowed or reverted the expansion of TET2-mutant clones in vivo. These results demonstrate the key role of 5hmC in normal hematopoiesis and TET2-mutant phenotypes and raise the possibility of utilizing these agents to further our understanding of preleukemia and clonal hematopoiesis. SIGNIFICANCE: We show that 5-hydroxymethylation profiles are cell type-specific and associated with transcriptional abundance and chromatin accessibility across human hematopoiesis. TET2 loss caused aberrant growth and differentiation phenotypes and disrupted 5hmC and transcriptional landscapes. Treatment of TET2 KO HSPCs with ascorbate or azacitidine reverted 5hmC profiles and restored aberrant phenotypes. This article is highlighted in the In This Issue feature, p. 265.


Assuntos
Dioxigenases , Síndromes Mielodisplásicas , Pré-Leucemia , Azacitidina/farmacologia , Cromatina/genética , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Hematopoese/genética , Humanos , Proteínas Proto-Oncogênicas/genética
9.
Proc Natl Acad Sci U S A ; 119(22): e2201883119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617427

RESUMO

Polycomb-group proteins play critical roles in gene silencing through the deposition of histone H3 lysine 27 trimethylation (H3K27me3) and chromatin compaction. This process is essential for embryonic stem cell (ESC) pluripotency, differentiation, and development. Polycomb repressive complex 2 (PRC2) can both read and write H3K27me3, enabling progressive spreading of H3K27me3 on the linear genome. Long-range Polycomb-associated DNA contacts have also been described, but their regulation and role in gene silencing remain unclear. Here, we apply H3K27me3 HiChIP, a protein-directed chromosome conformation method, and optical reconstruction of chromatin architecture to profile long-range Polycomb-associated DNA loops that span tens to hundreds of megabases across multiple topological associated domains in mouse ESCs and human induced pluripotent stem cells. We find that H3K27me3 loop anchors are enriched for Polycomb nucleation points and coincide with key developmental genes. Genetic deletion of H3K27me3 loop anchors results in disruption of spatial contact between distant loci and altered H3K27me3 in cis, both locally and megabases away on the same chromosome. In mouse embryos, loop anchor deletion leads to ectopic activation of the partner gene, suggesting that Polycomb-associated loops control gene silencing during development. Further, we find that alterations in PRC2 occupancy resulting from an RNA binding­deficient EZH2 mutant are accompanied by loss of Polycomb-associated DNA looping. Together, these results suggest PRC2 uses RNA binding to enhance long-range chromosome folding and H3K27me3 spreading. Developmental gene loci have unique roles in Polycomb spreading, emerging as important architectural elements of the epigenome.


Assuntos
Cromossomos , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Histonas , Complexo Repressor Polycomb 2 , Animais , Imunoprecipitação da Cromatina/métodos , Cromossomos/química , Cromossomos/metabolismo , Embrião de Mamíferos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/genética , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Conformação de Ácido Nucleico , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo
10.
Nat Protoc ; 17(6): 1518-1552, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35478247

RESUMO

The assay for transposase-accessible chromatin using sequencing (ATAC-seq) provides a simple and scalable way to detect the unique chromatin landscape associated with a cell type and how it may be altered by perturbation or disease. ATAC-seq requires a relatively small number of input cells and does not require a priori knowledge of the epigenetic marks or transcription factors governing the dynamics of the system. Here we describe an updated and optimized protocol for ATAC-seq, called Omni-ATAC, that is applicable across a broad range of cell and tissue types. The ATAC-seq workflow has five main steps: sample preparation, transposition, library preparation, sequencing and data analysis. This protocol details the steps to generate and sequence ATAC-seq libraries, with recommendations for sample preparation and downstream bioinformatic analysis. ATAC-seq libraries for roughly 12 samples can be generated in 10 h by someone familiar with basic molecular biology, and downstream sequencing analysis can be implemented using benchmarked pipelines by someone with basic bioinformatics skills and with access to a high-performance computing environment.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Transposases/genética , Transposases/metabolismo
11.
Neuron ; 110(7): 1193-1210.e13, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35093191

RESUMO

Multiple sclerosis (MS) is characterized by a targeted attack on oligodendroglia (OLG) and myelin by immune cells, which are thought to be the main drivers of MS susceptibility. We found that immune genes exhibit a primed chromatin state in single mouse and human OLG in a non-disease context, compatible with transitions to immune-competent states in MS. We identified BACH1 and STAT1 as transcription factors involved in immune gene regulation in oligodendrocyte precursor cells (OPCs). A subset of immune genes presents bivalency of H3K4me3/H3K27me3 in OPCs, with Polycomb inhibition leading to their increased activation upon interferon gamma (IFN-γ) treatment. Some MS susceptibility single-nucleotide polymorphisms (SNPs) overlap with these regulatory regions in mouse and human OLG. Treatment of mouse OPCs with IFN-γ leads to chromatin architecture remodeling at these loci and altered expression of interacting genes. Thus, the susceptibility for MS may involve OLG, which therefore constitutes novel targets for immunological-based therapies for MS.


Assuntos
Esclerose Múltipla , Animais , Diferenciação Celular/fisiologia , Cromatina/metabolismo , Epigenômica , Interferon gama/genética , Camundongos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
12.
NAR Genom Bioinform ; 3(4): lqab101, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34859208

RESUMO

As chromatin accessibility data from ATAC-seq experiments continues to expand, there is continuing need for standardized analysis pipelines. Here, we present PEPATAC, an ATAC-seq pipeline that is easily applied to ATAC-seq projects of any size, from one-off experiments to large-scale sequencing projects. PEPATAC leverages unique features of ATAC-seq data to optimize for speed and accuracy, and it provides several unique analytical approaches. Output includes convenient quality control plots, summary statistics, and a variety of generally useful data formats to set the groundwork for subsequent project-specific data analysis. Downstream analysis is simplified by a standard definition format, modularity of components, and metadata APIs in R and Python. It is restartable, fault-tolerant, and can be run on local hardware, using any cluster resource manager, or in provided Linux containers. We also demonstrate the advantage of aligning to the mitochondrial genome serially, which improves the accuracy of alignment statistics and quality control metrics. PEPATAC is a robust and portable first step for any ATAC-seq project. BSD2-licensed code and documentation are available at https://pepatac.databio.org.

13.
Nature ; 600(7890): 731-736, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819668

RESUMO

Extrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation1. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome2,3. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression. ecDNAs that encode multiple distinct oncogenes form hubs in diverse cancer cell types and primary tumours. Each ecDNA is more likely to transcribe the oncogene when spatially clustered with additional ecDNAs. ecDNA hubs are tethered by the bromodomain and extraterminal domain (BET) protein BRD4 in a MYC-amplified colorectal cancer cell line. The BET inhibitor JQ1 disperses ecDNA hubs and preferentially inhibits ecDNA-derived-oncogene transcription. The BRD4-bound PVT1 promoter is ectopically fused to MYC and duplicated in ecDNA, receiving promiscuous enhancer input to drive potent expression of MYC. Furthermore, the PVT1 promoter on an exogenous episome suffices to mediate gene activation in trans by ecDNA hubs in a JQ1-sensitive manner. Systematic silencing of ecDNA enhancers by CRISPR interference reveals intermolecular enhancer-gene activation among multiple oncogene loci that are amplified on distinct ecDNAs. Thus, protein-tethered ecDNA hubs enable intermolecular transcriptional regulation and may serve as units of oncogene function and cooperative evolution and as potential targets for cancer therapy.


Assuntos
Neoplasias , Proteínas Nucleares , Azepinas/farmacologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Proteínas Nucleares/genética , Oncogenes/genética , Fatores de Transcrição/genética
14.
Blood Cancer Discov ; 2(5): 518-531, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34568834

RESUMO

To understand mechanisms of response to BET inhibitors (BETi), we mined the Beat AML functional genomic dataset and performed genome-wide CRISPR screens on BETi- sensitive and BETi- resistant AML cells. Both strategies revealed regulators of monocytic differentiation, SPI1, JUNB, FOS, and aryl-hydrocarbon receptor signaling (AHR/ARNT), as determinants of BETi response. AHR activation synergized with BETi while inhibition antagonized BETi-mediated cytotoxicity. Consistent with BETi sensitivity dependence on monocytic differentiation, ex vivo sensitivity to BETi in primary AML patient samples correlated with higher expression of monocytic markers CSF1R, LILRs, and VCAN. In addition, HL-60 cell line differentiation enhanced its sensitivity to BETi. Further, screens to rescue BETi sensitivity identified BCL2 and CDK6 as druggable vulnerabilities. Finally, monocytic AML patient samples refractory to venetoclax ex vivo were significantly more sensitive to combined BETi + venetoclax. Together, our work highlights mechanisms that could predict BETi response and identifies combination strategies to overcome resistance.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Células HL-60 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Transdução de Sinais
15.
Science ; 373(6560): eabj2685, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516796

RESUMO

Although traumatic brain injury (TBI) acutely disrupts the cortex, most TBI-related disabilities reflect secondary injuries that accrue over time. The thalamus is a likely site of secondary damage because of its reciprocal connections with the cortex. Using a mouse model of mild TBI (mTBI), we found a chronic increase in C1q expression specifically in the corticothalamic system. Increased C1q expression colocalized with neuron loss and chronic inflammation and correlated with disruption in sleep spindles and emergence of epileptic activities. Blocking C1q counteracted these outcomes, suggesting that C1q is a disease modifier in mTBI. Single-nucleus RNA sequencing demonstrated that microglia are a source of thalamic C1q. The corticothalamic circuit could thus be a new target for treating TBI-related disabilities.


Assuntos
Lesões Encefálicas/complicações , Complemento C1q/fisiologia , Fases do Sono , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/fisiopatologia , Tálamo/fisiopatologia , Animais , Lesões Encefálicas/fisiopatologia , Complemento C1q/genética , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Camundongos , Microglia/metabolismo , Tálamo/metabolismo
16.
Nat Cell Biol ; 23(8): 915-924, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341533

RESUMO

Metastasis is the leading cause of cancer-related deaths and enables cancer cells to compromise organ function by expanding in secondary sites. Since primary tumours and metastases often share the same constellation of driver mutations, the mechanisms that drive their distinct phenotypes are unclear. Here we show that inactivation of the frequently mutated tumour suppressor gene LKB1 (encoding liver kinase B1) has evolving effects throughout the progression of lung cancer, which leads to the differential epigenetic re-programming of early-stage primary tumours compared with late-stage metastases. By integrating genome-scale CRISPR-Cas9 screening with bulk and single-cell multi-omic analyses, we unexpectedly identify LKB1 as a master regulator of chromatin accessibility in lung adenocarcinoma primary tumours. Using an in vivo model of metastatic progression, we further show that loss of LKB1 activates the early endoderm transcription factor SOX17 in metastases and a metastatic-like sub-population of cancer cells within primary tumours. The expression of SOX17 is necessary and sufficient to drive a second wave of epigenetic changes in LKB1-deficient cells that enhances metastatic ability. Overall, our study demonstrates how the downstream effects of an individual driver mutation can change throughout cancer development, with implications for stage-specific therapeutic resistance mechanisms and the gene regulatory underpinnings of metastatic evolution.


Assuntos
Adenocarcinoma/genética , Cromatina/metabolismo , Neoplasias Pulmonares/genética , Metástase Neoplásica/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Quinases Ativadas por AMP , Adenocarcinoma/fisiopatologia , Animais , Linhagem Celular Tumoral , Feminino , Proteínas HMGB/metabolismo , Humanos , Neoplasias Pulmonares/fisiopatologia , Masculino , Camundongos , Mutação , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição SOXF/metabolismo
17.
Brain Res ; 1770: 147627, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34418357

RESUMO

The enzymes glycine amidinotransferase, mitochondrial (GATM also known as AGAT) and guanidinoacetate N-methyltransferase (GAMT) function together to synthesize creatine from arginine, glycine, and S-Adenosyl methionine. Deficiency in either enzyme or the creatine transporter, CT1, results in a devastating neurological disorder, Cerebral Creatine Deficiency Syndrome (CCDS). To better understand the pathophysiology of CCDS, we mapped the distribution of GATM and GAMT at single cell resolution, leveraging RNA sequencing analysis combined with in vivo immunofluorescence (IF). Using the mouse as a model system, we find that GATM and GAMT are coexpressed in several tissues with distinct and overlapping cellular sources, implicating local synthesis as an important mechanism of creatine metabolism in numerous organs. Extending previous findings at the RNA level, our analysis demonstrates that oligodendrocytes express the highest level of Gatm and Gamt of any cell type in the body. We confirm this finding in the mouse brain by IF, where GATM localizes to the mitochondria of oligodendrocytes, whereas both oligodendrocytes and cerebral cortical neurons express GAMT. Interestingly, the latter is devoid of GATM. Single nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) analysis of 4 brain regions highlights a similar primacy of oligodendrocytes in the expression of GATM and GAMT in the human central nervous system. Importantly, an active putative regulatory element within intron 2 of human GATM is detected in oligodendrocytes but not neurons.


Assuntos
Amidinotransferases/metabolismo , Encéfalo/metabolismo , Creatina/metabolismo , Guanidinoacetato N-Metiltransferase/metabolismo , Oligodendroglia/metabolismo , Animais , Camundongos , Mitocôndrias/metabolismo , Neurônios/metabolismo
19.
Nat Genet ; 53(3): 403-411, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33633365

RESUMO

The advent of single-cell chromatin accessibility profiling has accelerated the ability to map gene regulatory landscapes but has outpaced the development of scalable software to rapidly extract biological meaning from these data. Here we present a software suite for single-cell analysis of regulatory chromatin in R (ArchR; https://www.archrproject.com/ ) that enables fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an intuitive, user-focused interface for complex single-cell analyses, including doublet removal, single-cell clustering and cell type identification, unified peak set generation, cellular trajectory identification, DNA element-to-gene linkage, transcription factor footprinting, mRNA expression level prediction from chromatin accessibility and multi-omic integration with single-cell RNA sequencing (scRNA-seq). Enabling the analysis of over 1.2 million single cells within 8 h on a standard Unix laptop, ArchR is a comprehensive software suite for end-to-end analysis of single-cell chromatin accessibility that will accelerate the understanding of gene regulation at the resolution of individual cells.


Assuntos
Cromatina , Análise de Célula Única/métodos , Software , Animais , Cromatina/genética , Cromatina/metabolismo , Análise por Conglomerados , Regulação da Expressão Gênica , Genoma , Humanos , Camundongos , Análise de Sequência de RNA/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Interface Usuário-Computador , Navegador
20.
Nat Genet ; 52(11): 1158-1168, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106633

RESUMO

Genome-wide association studies of neurological diseases have identified thousands of variants associated with disease phenotypes. However, most of these variants do not alter coding sequences, making it difficult to assign their function. Here, we present a multi-omic epigenetic atlas of the adult human brain through profiling of single-cell chromatin accessibility landscapes and three-dimensional chromatin interactions of diverse adult brain regions across a cohort of cognitively healthy individuals. We developed a machine-learning classifier to integrate this multi-omic framework and predict dozens of functional SNPs for Alzheimer's and Parkinson's diseases, nominating target genes and cell types for previously orphaned loci from genome-wide association studies. Moreover, we dissected the complex inverted haplotype of the MAPT (encoding tau) Parkinson's disease risk locus, identifying putative ectopic regulatory interactions in neurons that may mediate this disease association. This work expands understanding of inherited variation and provides a roadmap for the epigenomic dissection of causal regulatory variation in disease.


Assuntos
Doença de Alzheimer/genética , Encéfalo/anatomia & histologia , Neurônios/fisiologia , Doença de Parkinson/genética , Adulto , Atlas como Assunto , Variação Biológica da População , Montagem e Desmontagem da Cromatina , Estudos de Coortes , Elementos Facilitadores Genéticos , Epigenômica , Heterogeneidade Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Aprendizado de Máquina , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...