Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755243

RESUMO

Previous studies have reported alterations in cortical thickness in autism. However, few have included enough autistic females to determine if there are sex specific differences in cortical structure in autism. This longitudinal study aimed to investigate autistic sex differences in cortical thickness and trajectory of cortical thinning across childhood. Participants included 290 autistic (88 females) and 139 nonautistic (60 females) individuals assessed at up to 4 timepoints spanning ~2-13 years of age (918 total MRI timepoints). Estimates of cortical thickness in early and late childhood as well as the trajectory of cortical thinning were modeled using spatiotemporal linear mixed effects models of age-by-sex-by-diagnosis. Additionally, the spatial correspondence between cortical maps of sex-by-diagnosis differences and neurotypical sex differences were evaluated. Relative to their nonautistic peers, autistic females had more extensive cortical differences than autistic males. These differences involved multiple functional networks, and were mainly characterized by thicker cortex at ~3 years of age and faster cortical thinning in autistic females. Cortical regions in which autistic alterations were different between the sexes significantly overlapped with regions that differed by sex in neurotypical development. Autistic females and males demonstrated some shared differences in cortical thickness and rate of cortical thinning across childhood relative to their nonautistic peers, however these areas were relatively small compared to the widespread differences observed across the sexes. These results support evidence of sex-specific neurobiology in autism and suggest that processes that regulate sex differentiation in the neurotypical brain contribute to sex differences in the etiology of autism.

2.
Sci Adv ; 9(41): eadg3844, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824623

RESUMO

Brain cells are arranged in laminar, nuclear, or columnar structures, spanning a range of scales. Here, we construct a reliable cell census in the frontal lobe of human cerebral cortex at micrometer resolution in a magnetic resonance imaging (MRI)-referenced system using innovative imaging and analysis methodologies. MRI establishes a macroscopic reference coordinate system of laminar and cytoarchitectural boundaries. Cell counting is obtained with a digital stereological approach on the 3D reconstruction at cellular resolution from a custom-made inverted confocal light-sheet fluorescence microscope (LSFM). Mesoscale optical coherence tomography enables the registration of the distorted histological cell typing obtained with LSFM to the MRI-based atlas coordinate system. The outcome is an integrated high-resolution cellular census of Broca's area in a human postmortem specimen, within a whole-brain reference space atlas.


Assuntos
Área de Broca , Córtex Cerebral , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico
3.
Neuroimage ; 244: 118610, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571161

RESUMO

A tool was developed to automatically segment several subcortical limbic structures (nucleus accumbens, basal forebrain, septal nuclei, hypothalamus without mammillary bodies, the mammillary bodies, and fornix) using only a T1-weighted MRI as input. This tool fills an unmet need as there are few, if any, publicly available tools to segment these clinically relevant structures. A U-Net with spatial, intensity, contrast, and noise augmentation was trained using 39 manually labeled MRI data sets. In general, the Dice scores, true positive rates, false discovery rates, and manual-automatic volume correlation were very good relative to comparable tools for other structures. A diverse data set of 698 subjects were segmented using the tool; evaluation of the resulting labelings showed that the tool failed in less than 1% of cases. Test-retest reliability of the tool was excellent. The automatically segmented volume of all structures except mammillary bodies showed effectiveness at detecting either clinical AD effects, age effects, or both. This tool will be publicly released with FreeSurfer (surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic). Together with the other cortical and subcortical limbic segmentations, this tool will allow FreeSurfer to provide a comprehensive view of the limbic system in an automated way.


Assuntos
Aprendizado Profundo , Sistema Límbico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Prosencéfalo Basal/diagnóstico por imagem , Feminino , Fórnice/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Núcleo Accumbens/diagnóstico por imagem , Reprodutibilidade dos Testes , Núcleos Septais/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA