Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 137(24): 4307-16, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21098571

RESUMO

Neural crest cells (NCCs) are a subset of multipotent, migratory stem cells that populate a large number of tissues during development and are important for craniofacial and cardiac morphogenesis. Although microRNAs (miRNAs) have emerged as important regulators of development and disease, little is known about their role in NCC development. Here, we show that loss of miRNA biogenesis by NCC-specific disruption of murine Dicer results in embryos lacking craniofacial cartilaginous structures, cardiac outflow tract septation and thymic and dorsal root ganglia development. Dicer mutant embryos had reduced expression of Dlx2, a transcriptional regulator of pharyngeal arch development, in the first pharyngeal arch (PA1). miR-452 was enriched in NCCs, was sufficient to rescue Dlx2 expression in Dicer mutant pharyngeal arches, and regulated non-cell-autonomous signaling involving Wnt5a, Shh and Fgf8 that converged on Dlx2 regulation in PA1. Correspondingly, knockdown of miR-452 in vivo decreased Dlx2 expression in the mandibular component of PA1, leading to craniofacial defects. These results suggest that post-transcriptional regulation by miRNAs is required for differentiation of NCC-derived tissues and that miR-452 is involved in epithelial-mesenchymal signaling in the pharyngeal arch.


Assuntos
Região Branquial/embriologia , MicroRNAs/metabolismo , Crista Neural/embriologia , Animais , Linhagem Celular , RNA Helicases DEAD-box/genética , Endorribonucleases/genética , Fator 8 de Crescimento de Fibroblasto/genética , Proteínas Hedgehog/genética , Proteínas de Homeodomínio/genética , Hibridização In Situ , Camundongos , Camundongos Mutantes , MicroRNAs/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonuclease III , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Proteínas Wnt/genética , Proteína Wnt-5a
2.
Pediatr Cardiol ; 31(3): 349-56, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20140609

RESUMO

The transcriptional regulation of cardiovascular development requires precise spatiotemporal control of gene expression, and heterozygous mutations of transcription factors have frequently been implicated in human cardiovascular malformations. A novel mechanism involving post-transcriptional regulation by small, noncoding microRNAs (miRNAs) has emerged as a central regulator of many cardiogenic processes. We are beginning to understand the functions that miRNAs play during essential biologic processes, such as cell proliferation, differentiation, apoptosis, stress response, and tumorigenesis. The identification of miRNAs expressed in specific cardiac and vascular cell types has led to the discovery of important regulatory roles for these small RNAs during cardiomyocyte differentiation, cell cycle, conduction, and vessel formation. Here, we overview the recent findings on miRNA regulation in cardiovascular development. Further analysis of miRNA function during cardiovascular development will allow us to determine the potential for novel miRNA-based therapeutic strategies.


Assuntos
Coração/embriologia , MicroRNAs/genética , Miócitos Cardíacos/fisiologia , Diferenciação Celular , Proliferação de Células , Expressão Gênica , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Coração/fisiologia , Humanos , Músculo Liso/embriologia , Músculo Liso/fisiologia
3.
Nature ; 460(7256): 705-10, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19578358

RESUMO

MicroRNAs (miRNAs) are regulators of myriad cellular events, but evidence for a single miRNA that can efficiently differentiate multipotent stem cells into a specific lineage or regulate direct reprogramming of cells into an alternative cell fate has been elusive. Here we show that miR-145 and miR-143 are co-transcribed in multipotent murine cardiac progenitors before becoming localized to smooth muscle cells, including neural crest stem-cell-derived vascular smooth muscle cells. miR-145 and miR-143 were direct transcriptional targets of serum response factor, myocardin and Nkx2-5 (NK2 transcription factor related, locus 5) and were downregulated in injured or atherosclerotic vessels containing proliferating, less differentiated smooth muscle cells. miR-145 was necessary for myocardin-induced reprogramming of adult fibroblasts into smooth muscle cells and sufficient to induce differentiation of multipotent neural crest stem cells into vascular smooth muscle. Furthermore, miR-145 and miR-143 cooperatively targeted a network of transcription factors, including Klf4 (Kruppel-like factor 4), myocardin and Elk-1 (ELK1, member of ETS oncogene family), to promote differentiation and repress proliferation of smooth muscle cells. These findings demonstrate that miR-145 can direct the smooth muscle fate and that miR-145 and miR-143 function to regulate the quiescent versus proliferative phenotype of smooth muscle cells.


Assuntos
Linhagem da Célula , MicroRNAs/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Regulação da Expressão Gênica , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Modelos Biológicos , Miocárdio/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Doenças Vasculares/metabolismo , Proteínas Elk-4 do Domínio ets/metabolismo
4.
Circ Res ; 104(6): 724-32, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19325160

RESUMO

The transcriptional regulation of cardiovascular development requires precise spatiotemporal control of gene expression, and heterozygous mutations of transcription factors have frequently been implicated in human cardiovascular malformations. A novel mechanism involving posttranscriptional regulation by small, noncoding microRNAs (miRNAs) has emerged as a central regulator of many cardiogenic processes. We are beginning to understand the functions that miRNAs play during essential biological processes, such as cell proliferation, differentiation, apoptosis, stress response, and tumorigenesis. The identification of miRNAs expressed in specific cardiac and vascular cell types has led to the discovery of important regulatory roles for these small RNAs during cardiomyocyte differentiation, cell cycle, conduction, vessel formation, and during stages of cardiac hypertrophy in the adult. Here, we overview the recent findings on miRNA regulation in cardiovascular development and report the latest advances in understanding their function by unveiling their mRNA targets. Further analysis of miRNA function during cardiovascular development will allow us to determine the potential for novel miRNA-based therapeutic strategies.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Coração/embriologia , MicroRNAs/biossíntese , Proteínas Musculares/biossíntese , Neovascularização Fisiológica/fisiologia , RNA Mensageiro/biossíntese , Animais , Apoptose/fisiologia , Cardiomegalia/genética , Cardiomegalia/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Humanos , MicroRNAs/genética , Proteínas Musculares/genética , RNA Mensageiro/genética
5.
J Cell Sci ; 122(Pt 6): 749-52, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19261844
6.
Cell Cycle ; 7(24): 3815-8, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19066459

RESUMO

Despite decades of progress in cardiovascular biology, heart disease remains the leading cause of death in the developed world. Recently, cell-based therapy has emerged as a promising avenue for future therapeutics. However, the molecular signals that regulate cardiac progenitor cells are not well-understood. Wnt/beta-catenin signaling is essential for expansion and differentiation of cardiac progenitors in mouse embryos and in the embryonic stem cell system. Studies from our laboratory and others highlight the pivotal roles of Wnt/beta-catenin signaling in the multiple steps of cardiogenesis and provide insights into understanding the complex regulation of cardiac progenitors. Here we discuss the required roles of Wnt/beta-catenin signaling at the different stages of heart development.


Assuntos
Coração/embriologia , Miócitos Cardíacos/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Células-Tronco Embrionárias/fisiologia , Mesoderma/fisiologia , Camundongos , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 105(46): 17830-5, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19004786

RESUMO

Organ patterning during embryonic development requires precise temporal and spatial regulation of protein activity. microRNAs (miRNAs), small noncoding RNAs that typically inhibit protein expression, are broadly important for proper development, but their individual functions during organogenesis are largely unknown. We report that miR-138 is expressed in specific domains in the zebrafish heart and is required to establish appropriate chamber-specific gene expression patterns. Disruption of miR-138 function led to ventricular expansion of gene expression normally restricted to the atrio-ventricular valve region and, ultimately, to disrupted ventricular cardiomyocyte morphology and cardiac function. Temporal-specific knockdown of miR-138 by antagomiRs showed miR-138 function was required during a discrete developmental window, 24-34 h post-fertilization (hpf). miR-138 functioned partially by repressing the retinoic acid synthesis enzyme, aldehyde dehydrogenase-1a2, in the ventricle. This activity was complemented by miR-138-mediated ventricular repression of the gene encoding versican (cspg2), which was positively regulated by retinoic-acid signaling. Our findings demonstrate that miR-138 helps establish discrete domains of gene expression during cardiac morphogenesis by targeting multiple members of a common pathway, and also establish the use of antagomiRs in fish for temporal knockdown of miRNA function.


Assuntos
Padronização Corporal/genética , Desenvolvimento Embrionário/genética , Coração/embriologia , MicroRNAs/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/citologia , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Camundongos , MicroRNAs/genética , Células NIH 3T3 , Organogênese , Fatores de Tempo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Pediatr Res ; 57(3): 453-7, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15585672

RESUMO

We demonstrated previously that neonatal proximal tubules have a lower passive paracellular permeability to chloride ions and higher resistance than that of adult proximal tubules. In addition, administration of thyroid hormone to neonates, before the normal maturational increase in serum thyroid hormone levels, prematurely accelerates the developmental increase in chloride permeability to adult levels. To test the hypothesis that there is a maturational change in tight junction proteins and that thyroid hormone mediates these changes, we examined the two known tight junction proteins present in proximal tubules, occludin and claudin 2. Using immunoblot and immunohistochemistry, we demonstrated that claudin 2 has a 4-fold greater abundance in neonatal proximal tubules than in adult tubules. Occludin, however, has a 4-fold greater expression in adult tubules than in neonatal tubules. Administration of thyroid hormone to neonates did not affect claudin 2 expression, occludin expression, or the transepithelial resistance in rat proximal tubule cells in vitro. In conclusion, there are postnatal maturational changes in tight junction proteins. The factors that cause these maturational changes are unknown but unlikely to be due solely to the maturational increase in thyroid hormone.


Assuntos
Túbulos Renais Proximais/crescimento & desenvolvimento , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana/metabolismo , Junções Íntimas/metabolismo , Fatores Etários , Animais , Células Cultivadas , Claudinas , Feminino , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Ocludina , Gravidez , Ratos , Ratos Sprague-Dawley , Hormônios Tireóideos/farmacologia
9.
Proc Natl Acad Sci U S A ; 100(9): 5286-91, 2003 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-12672950

RESUMO

Polycystic kidney disease (PKD) is the most common genetic cause of renal failure in humans. Several proteins that are encoded by genes associated with PKD have recently been identified in primary cilia in renal tubular epithelia. These findings have suggested that abnormalities in cilia formation and function may play a role in the pathogenesis of PKD. To directly determine whether cilia are essential to maintain tubular integrity, we conditionally inactivated KIF3A, a subunit of kinesin-II that is essential for cilia formation, in renal epithelia. Constitutive inactivation of KIF3A produces abnormalities of left-right axis determination and embryonic lethality. Here we show that tissue-specific inactivation of KIF3A in renal tubular epithelial cells results in viable offspring with normal-appearing kidneys at birth. Cysts begin to develop in the kidney at postnatal day 5 and cause renal failure by postnatal day 21. The cyst epithelial cells lack primary cilia and exhibit increased proliferation and apoptosis, apical mislocalization of the epidermal growth factor receptor, increased expression of beta-catenin and c-Myc, and inhibition of p21(CIP1). These results demonstrate that the absence of renal cilia produces both the clinical and cell biological findings associated with PKD. Most generally, the phenotype of Kif3a mutant mice suggests a role for primary cilia in the maintenance of lumen-forming epithelial differentiation.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Rim/metabolismo , Cinesinas/antagonistas & inibidores , Proteínas Musculares/fisiologia , Doenças Renais Policísticas/genética , Animais , Sequência de Bases , Northern Blotting , Cílios/ultraestrutura , Primers do DNA , Marcação In Situ das Extremidades Cortadas , Rim/ultraestrutura , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
J Am Soc Nephrol ; 14(5): 1188-99, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12707389

RESUMO

Ischemia-reperfusion injury (I/R injury) is a common cause of acute renal failure. Recovery from I/R injury requires renal tubular regeneration. Hematopoietic stem cells (HSC) have been shown to be capable of differentiating into hepatocytes, cardiac myocytes, gastrointestinal epithelial cells, and vascular endothelial cells during tissue repair. The current study tested the hypothesis that murine HSC can contribute to the regeneration of renal tubular epithelial cells after I/R injury. HSC isolated from male Rosa26 mice that express beta-galactosidase constitutively were transplanted into female nontransgenic mice after unilateral renal I/R injury. Four weeks after HSC transplantation, beta-galactosidase-positive cells were detected in renal tubules of the recipients by X-Gal staining. PCR analysis of the male-specific Sry gene and Y chromosome fluorescence in situ hybridization confirmed the presence of male-derived cells in the kidneys of female recipients. Antibody co-staining showed that beta-galactosidase was primarily expressed in renal proximal tubules. This is the first report to show that HSC can differentiate into renal tubular cells after I/R injury. Because of their availability, HSC may be useful for cell replacement therapy of acute renal failure.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Túbulos Renais/fisiologia , Regeneração , Traumatismo por Reperfusão/fisiopatologia , Traumatismo por Reperfusão/terapia , Animais , Anticorpos , Antígenos Ly/análise , Biomarcadores , Morte Celular , Diferenciação Celular , Separação Celular/métodos , Células Epiteliais/citologia , Feminino , Galactosídeos , Genes sry , Células-Tronco Hematopoéticas/química , Células-Tronco Hematopoéticas/citologia , Hibridização in Situ Fluorescente , Indóis , Túbulos Renais/citologia , Masculino , Proteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos , Proteínas Proto-Oncogênicas c-kit/análise , Traumatismo por Reperfusão/patologia , Coloração e Rotulagem , Cromossomo Y , beta-Galactosidase/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA