Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Microbiol Spectr ; 12(5): e0362823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38497714

RESUMO

During the SARS-CoV-2 pandemic, many countries directed substantial resources toward genomic surveillance to detect and track viral variants. There is a debate over how much sequencing effort is necessary in national surveillance programs for SARS-CoV-2 and future pandemic threats. We aimed to investigate the effect of reduced sequencing on surveillance outcomes in a large genomic data set from Switzerland, comprising more than 143k sequences. We employed a uniform downsampling strategy using 100 iterations each to investigate the effects of fewer available sequences on the surveillance outcomes: (i) first detection of variants of concern (VOCs), (ii) speed of introduction of VOCs, (iii) diversity of lineages, (iv) first cluster detection of VOCs, (v) density of active clusters, and (vi) geographic spread of clusters. The impact of downsampling on VOC detection is disparate for the three VOC lineages, but many outcomes including introduction and cluster detection could be recapitulated even with only 35% of the original sequencing effort. The effect on the observed speed of introduction and first detection of clusters was more sensitive to reduced sequencing effort for some VOCs, in particular Omicron and Delta, respectively. A genomic surveillance program needs a balance between societal benefits and costs. While the overall national dynamics of the pandemic could be recapitulated by a reduced sequencing effort, the effect is strongly lineage-dependent-something that is unknown at the time of sequencing-and comes at the cost of accuracy, in particular for tracking the emergence of potential VOCs.IMPORTANCESwitzerland had one of the most comprehensive genomic surveillance systems during the COVID-19 pandemic. Such programs need to strike a balance between societal benefits and program costs. Our study aims to answer the question: How would surveillance outcomes have changed had we sequenced less? We find that some outcomes but also certain viral lineages are more affected than others by sequencing less. However, sequencing to around a third of the original effort still captured many important outcomes for the variants of concern such as their first detection but affected more strongly other measures like the detection of first transmission clusters for some lineages. Our work highlights the importance of setting predefined targets for a national genomic surveillance program based on which sequencing effort should be determined. Additionally, the use of a centralized surveillance platform facilitates aggregating data on a national level for rapid public health responses as well as post-analyses.


Assuntos
COVID-19 , Genoma Viral , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/virologia , COVID-19/diagnóstico , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/classificação , Suíça/epidemiologia , Genoma Viral/genética , Monitoramento Epidemiológico , Pandemias , Filogenia
2.
Viruses ; 15(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38005845

RESUMO

With nearly half of the world's population being at risk of infection, dengue virus represents a major global health issue. The use of dengue antigen rapid diagnostic tests (Ag-RDTs) represents an alternative to PCR methods for the diagnosis of acute infections since they display excellent sensitivities and specificities and can be performed outside the laboratory. The high genetic diversity of the dengue virus genome represents a challenge for vaccine development, and the progressive expansion of this virus into previously nonendemic regions justifies the implementation of a genomic surveillance program. In this proof-of-concept study, we show the feasibility of sequencing dengue virus genomes directly from positive Ag-RDT (Standard Q Dengue Duo Test assay, n = 7) cassettes stored up to 31 days at room temperature after testing. For 5 of the 7 samples, a high number of reads were obtained allowing phylogenetic analyses to be carried out to determine not only the serotypes (dengue 1, 2, 3 and 4 were detected) but also the genotypes. Furthermore, in one sample, our unbiased metagenomic next-generation sequencing approach made it possible to detect epizootic hemorrhagic disease virus sequences, an arthropod-transmitted virus in ruminants. To conclude, as such an approach requires no cold storage or freezing of samples, dengue Ag-RDTs represent a very pragmatic and robust alternative for the genomic surveillance of dengue virus.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/epidemiologia , Filogenia , Sensibilidade e Especificidade , Proteínas não Estruturais Virais/genética , Imunoglobulina M , Genoma Viral , Ensaio de Imunoadsorção Enzimática , Anticorpos Antivirais
3.
Viruses ; 15(7)2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37515261

RESUMO

Anelloviruses are extremely prevalent in the human population and are considered to be commensal parts of the human virome. The best-known member in humans is the Torque teno virus. Recent metagenomic next-generation sequencing investigations have helped reveal the considerable number of species and genotypes from the same genus that can be co-detected within a single individual and that this diversity increases as a function of age during the first months/years of life. As a result, to date, the bioinformatics analysis of this genetic diversity remains complex and constraining for researchers. Here, we present SCANellome, a user-friendly tool to investigate the anellome composition at the genus, species, and genotype levels of samples from metagenomics data generated by the Illumina and Nanopore platforms. SCANellome is based on an in-house up-to-date database that includes all human and non-human primate anellovirus reference sequences available on GenBank and meets the latest classification criteria established by the International Committee on Taxonomy of Viruses.


Assuntos
Anelloviridae , Torque teno virus , Vírus , Humanos , Animais , Anelloviridae/genética , Metagenômica , Vírus/genética , Primatas
4.
Viruses ; 15(4)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37112908

RESUMO

Metagenomics revealed novel and routinely overlooked viruses, representing sources of unrecognized infections after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We aim to describe DNA and RNA virus prevalence and kinetics in allo-HSCT recipients' plasma for one year post HSCT. We included 109 adult patients with first allo-HSCT from 1 March 2017 to 31 January 2019 in this observational cohort study. Seventeen DNA and three RNA viral species were screened with qualitative and/or quantitative r(RT)-PCR assays using plasma samples collected at 0, 1, 3, 6, and 12 months post HSCT. TTV infected 97% of patients, followed by HPgV-1 (prevalence: 26-36%). TTV (median 3.29 × 105 copies/mL) and HPgV-1 (median 1.18 × 106 copies/mL) viral loads peaked at month 3. At least one Polyomaviridae virus (BKPyV, JCPyV, MCPyV, HPyV6/7) was detected in >10% of patients. HPyV6 and HPyV7 prevalence reached 27% and 12% at month 3; CMV prevalence reached 27%. HSV, VZV, EBV, HHV-7, HAdV and B19V prevalence remained <5%. HPyV9, TSPyV, HBoV, EV and HPg-V2 were never detected. At month 3, 72% of patients had co-infections. TTV and HPgV-1 infections were highly prevalent. BKPyV, MCPyV and HPyV6/7 were frequently detected relative to classical culprits. Further investigation is needed into associations between these viral infections and immune reconstitution or clinical outcomes.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Poliomavírus das Células de Merkel , Vírus de RNA , Torque teno virus , Viroses , Adulto , Humanos , Viroses/epidemiologia , DNA Viral/genética , Torque teno virus/genética , Vírus de RNA/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Poliomavírus das Células de Merkel/genética , Transplantados
5.
Eur J Pediatr ; 182(2): 941-947, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36399200

RESUMO

Most children with fever without source (FWS) require diagnostic laboratory tests to exclude a serious bacterial infection (SBI), often followed by admission and empirical antibiotics. As febrile children with a viral infection are less likely to have a SBI, identifying patients with systemic viral infection could contribute to exclude SBI. We evaluated whether the presence of virus in the blood could be used as a biomarker to rule out SBI. Children < 3 years old with FWS were prospectively enrolled and had real-time (reverse-transcription) PCR performed on the blood for adenovirus, enterovirus, parechovirus, and HHV6. 20/135 patients had SBI, and in 47/135, at least one virus was detected in the blood. Viremia had a higher sensitivity and negative predictive value (90% and 96%) to rule out SBI compared to CRP (65% and 93%) and PCT (55% and 90%). The odds ratio (OR) for the presence of SBI among non-viremic patients was 5.8 (p = 0.0225), compared to 5.5 for CRP ≥ 40 mg/l (p = 0.0009) and 3.7 for PCT ≥ 0.5 ng/mL (0.0093). This remained significant after adjusting for CRP and PCT (OR 5.6 and 5.9, respectively; p = 0.03 for both). Area under the ROC curve for CRP and PCT were 0.754 and 0.779, respectively, but increased to 0.803 and 0.832, respectively, when combined with viremia. CONCLUSION: The presence of viremia had a better performance than commonly used biomarkers to rule-out SBI and could potentially be used in conjunction with CRP and/or PCT in the evaluation of children with FWS. Larger studies should evaluate the role of point-of-care testing of viruses by (revere-transcription) PCR in the plasma in management algorithms of children with FWS. WHAT IS KNOWN: • Most children with FWS have a viral infection, but up to 15% have a SBI; most require laboratory tests, and many admission and empirical antibiotics. • Children with a viral infection are less likely to have a SBI. WHAT IS NEW: • Children with a systemic viral infection are less likely to have an SBI. • Viremia is a better predictor of absence of SBI than commonly used biomarkers and could potentially be used in conjunction with CRP and/or PCT in the evaluation of children with FWS.


Assuntos
Infecções Bacterianas , Viremia , Humanos , Criança , Lactente , Pré-Escolar , Viremia/diagnóstico , Proteína C-Reativa/análise , Infecções Bacterianas/complicações , Infecções Bacterianas/diagnóstico , Febre/diagnóstico , Febre/etiologia , Biomarcadores , Antibacterianos
6.
Sci Transl Med ; 15(680): eabn7979, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36346321

RESUMO

Genome sequences from evolving infectious pathogens allow quantification of case introductions and local transmission dynamics. We sequenced 11,357 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Switzerland in 2020-the sixth largest effort globally. Using a representative subset of these data, we estimated viral introductions to Switzerland and their persistence over the course of 2020. We contrasted these estimates with simple null models representing the absence of certain public health measures. We show that Switzerland's border closures decoupled case introductions from incidence in neighboring countries. Under a simple model, we estimate an 86 to 98% reduction in introductions during Switzerland's strictest border closures. Furthermore, the Swiss 2020 partial lockdown roughly halved the time for sampled introductions to die out. Last, we quantified local transmission dynamics once introductions into Switzerland occurred using a phylodynamic model. We found that transmission slowed 35 to 63% upon outbreak detection in summer 2020 but not in fall. This finding may indicate successful contact tracing over summer before overburdening in fall. The study highlights the added value of genome sequencing data for understanding transmission dynamics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Saúde Pública , Suíça/epidemiologia , Controle de Doenças Transmissíveis , Genoma Viral/genética , Filogenia
7.
Viruses ; 14(8)2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893678

RESUMO

Torque teno virus (TTV) is considered to be an ubiquitous member of the commensal human blood virome commonly reported in mixed genotype co-infections. This study investigates the genomic diversity of TTV in blood samples from 816 febrile Tanzanian children. Metagenomic next-generation sequencing was used to screen for TTV in individual blood samples from a cohort of 816 febrile Tanzanian paediatric outpatients. For positive samples, the number of TTV species and genotypes present were evaluated. We investigate the linear relationship between individual TTV diversity and the patient age by linear regression. TTV was detected in 97.2% of sera. ORF1 analysis revealed the presence of 149 genotypes from 38 species, suggesting the presence of 13 new species. These genotypes were mostly present as co-infections with a median of 11 genotypes/subject (range: 1−71). In terms of species, we found a median of nine species/subject (range: 1−29). We further show a significant association between the diversity of co-detected TTV and the age of the subjects (p value < 0.0001). This study shows that significant TTV genomic diversity is acquired by the age of five and that this diversity tends to increase with age, which indicates a repetitive TTV acquisition during the first months/years of life.


Assuntos
Coinfecção , Infecções por Vírus de DNA , Torque teno virus , Criança , Estudos de Coortes , Infecções por Vírus de DNA/epidemiologia , DNA Viral/genética , Genômica , Humanos , Pacientes Ambulatoriais , Tanzânia/epidemiologia , Torque teno virus/genética
8.
Elife ; 112022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35850933

RESUMO

Background: There is ongoing uncertainty regarding transmission chains and the respective roles of healthcare workers (HCWs) and elderly patients in nosocomial outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in geriatric settings. Methods: We performed a retrospective cohort study including patients with nosocomial coronavirus disease 2019 (COVID-19) in four outbreak-affected wards, and all SARS-CoV-2 RT-PCR positive HCWs from a Swiss university-affiliated geriatric acute-care hospital that admitted both Covid-19 and non-Covid-19 patients during the first pandemic wave in Spring 2020. We combined epidemiological and genetic sequencing data using a Bayesian modelling framework, and reconstructed transmission dynamics of SARS-CoV-2 involving patients and HCWs, to determine who infected whom. We evaluated general transmission patterns according to case type (HCWs working in dedicated Covid-19 cohorting wards: HCWcovid; HCWs working in non-Covid-19 wards where outbreaks occurred: HCWoutbreak; patients with nosocomial Covid-19: patientnoso) by deriving the proportion of infections attributed to each case type across all posterior trees and comparing them to random expectations. Results: During the study period (1 March to 7 May 2020), we included 180 SARS-CoV-2 positive cases: 127 HCWs (91 HCWcovid, 36 HCWoutbreak) and 53 patients. The attack rates ranged from 10% to 19% for patients, and 21% for HCWs. We estimated that 16 importation events occurred with high confidence (4 patients, 12 HCWs) that jointly led to up to 41 secondary cases; in six additional cases (5 HCWs, 1 patient), importation was possible with a posterior probability between 10% and 50%. Most patient-to-patient transmission events involved patients having shared a ward (95.2%, 95% credible interval [CrI] 84.2%-100%), in contrast to those having shared a room (19.7%, 95% CrI 6.7%-33.3%). Transmission events tended to cluster by case type: patientnoso were almost twice as likely to be infected by other patientnoso than expected (observed:expected ratio 2.16, 95% CrI 1.17-4.20, p=0.006); similarly, HCWoutbreak were more than twice as likely to be infected by other HCWoutbreak than expected (2.72, 95% CrI 0.87-9.00, p=0.06). The proportion of infectors being HCWcovid was as expected as random. We found a trend towards a greater proportion of high transmitters (≥2 secondary cases) among HCWoutbreak than patientnoso in the late phases (28.6% vs. 11.8%) of the outbreak, although this was not statistically significant. Conclusions: Most importation events were linked to HCW. Unexpectedly, transmission between HCWcovid was more limited than transmission between patients and HCWoutbreak. This finding highlights gaps in infection control and suggests the possible areas of improvements to limit the extent of nosocomial transmission. Funding: This study was supported by a grant from the Swiss National Science Foundation under the NRP78 funding scheme (Grant no. 4078P0_198363).


Assuntos
COVID-19 , Infecção Hospitalar , Idoso , Teorema de Bayes , COVID-19/epidemiologia , Infecção Hospitalar/epidemiologia , Surtos de Doenças , Genômica , Hospitais , Humanos , Estudos Retrospectivos , SARS-CoV-2/genética
9.
Antimicrob Resist Infect Control ; 11(1): 51, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303939

RESUMO

BACKGROUND: We investigated the contribution of both occupational and community exposure for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among employees of a university-affiliated long-term care facility (LTCF), during the 1st pandemic wave in Switzerland (March-June 2020). METHODS: We performed a nested analysis of a seroprevalence study among all volunteering LTCF staff to determine community and nosocomial risk factors for SARS-CoV-2 seropositivity using modified Poison regression. We also combined epidemiological and genetic sequencing data from a coronavirus disease 2019 (COVID-19) outbreak investigation in a LTCF ward to infer transmission dynamics and acquisition routes of SARS-CoV-2, and evaluated strain relatedness using a maximum likelihood phylogenetic tree. RESULTS: Among 285 LTCF employees, 176 participated in the seroprevalence study, of whom 30 (17%) were seropositive for SARS-CoV-2. Most (141/176, 80%) were healthcare workers (HCWs). Risk factors for seropositivity included exposure to a COVID-19 inpatient (adjusted prevalence ratio [aPR] 2.6; 95% CI 0.9-8.1) and community contact with a COVID-19 case (aPR 1.7; 95% CI 0.8-3.5). Among 18 employees included in the outbreak investigation, the outbreak reconstruction suggests 4 likely importation events by HCWs with secondary transmissions to other HCWs and patients. CONCLUSIONS: These two complementary epidemiologic and molecular approaches suggest a substantial contribution of both occupational and community exposures to COVID-19 risk among HCWs in LTCFs. These data may help to better assess the importance of occupational health hazards and related legal implications during the COVID-19 pandemic.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Assistência de Longa Duração , Casas de Saúde , Pandemias , Filogenia , SARS-CoV-2/genética , Estudos Soroepidemiológicos
10.
J Clin Microbiol ; 60(1): e0169821, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34757834

RESUMO

This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Laboratórios , Laboratórios Clínicos , Projetos Piloto
11.
Front Immunol ; 13: 1060886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713419

RESUMO

Introduction: Human pegivirus-1 (HPgV-1) is a so-called commensal virus for which no known associated organ disease has been found to date. Yet, it affects immune-reconstitution as previously studied in the HIV population, in whom active co-infection with HPgV-1 can modulate T and NK cell activation and differentiation leading to a protective effect against the evolution of the disease. Little is known on the effect of HPgV-1 on immune-reconstitution in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients, a patient population in which we and others have previously reported high prevalence of HPgV-1 replication. The aim of this study was to compare the immune reconstitution after allo-HSCT among HPgV-1-viremic and HPgV-1-non-viremic patients. Methods: Within a cohort study of 40 allo-HSCT patients, 20 allo-HSCT recipients positive in plasma sample for HPgV-1 by rRT-PCR during the first year (1, 3, 6, 12 months) after transplantation were matched with 20 allo-HSCT recipients negative for HPgV-1. T and NK cell reconstitution was monitored by flow cytometry in peripheral blood samples from allo-HSCT recipients at the same time points. Results: We observed no significant difference in the absolute number and subsets proportions of CD4 and CD8 T cells between patient groups at any analysed timepoint. We observed a significantly higher absolute number of NK cells at 3 months among HPgV-1-viremic patients. Immunophenotypic analysis showed a significantly higher proportion of CD56bright NK cells mirrored by a reduced percentage of CD56dim NK cells in HPgV-1-positive patients during the first 6 months after allo-HSCT. At 6 months post-allo-HSCT, NK cell phenotype significantly differed depending on HPgV-1, HPgV-1-viremic patients displaying NK cells with lower CD16 and CD57 expression compared with HPgV-1-negative patients. In accordance with their less differentiated phenotype, we detected a significantly reduced expression of granzyme B in NK cells in HPgV-1-viremic patients at 6 months. Discussion: Our study shows that HPgV-1-viremic allo-HSCT recipients displayed an impaired NK cell, but not T cell, immune-reconstitution compared with HPgV-1-non-viremic patients, revealing for the first time a potential association between replication of the non-pathogenic HPgV-1 virus and immunomodulation after allo-HSCT.


Assuntos
Vírus GB C , Transplante de Células-Tronco Hematopoéticas , Humanos , Estudos de Coortes , Transplante Homólogo , Células Matadoras Naturais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
12.
Microorganisms ; 9(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34835424

RESUMO

Novel human polyomaviruses (HPyV) have been recently identified in solid organ transplant recipients. Trichodysplasia spinulosa (TS) is a rare disease associated with immunosuppression and induced by a polyomavirus (TSPyV). We report here a case of primary and disseminated TSPyV infection after kidney transplantation with extensive skin lesions, sustained viremia, and high viral loads in urine specimens, anal, nasal and throat swabs, assessed via specific real-time PCR for TSPyV during a follow-up period of 32 months after transplantation. The detection of TSPyV with a high viral load in respiratory and anal swab samples is compatible with viral replication and thus may suggest potential respiratory and oro-fecal routes of transmission.

13.
Microorganisms ; 9(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34683466

RESUMO

BACKGROUND: Oncological patients have a higher risk of prolonged SARS-CoV-2 shedding, which, in turn, can lead to evolutionary mutations and emergence of novel viral variants. The aim of this study was to analyze biological samples of a cohort of oncological patients by deep sequencing to detect any significant viral mutations. METHODS: High-throughput sequencing was performed on selected samples from a SARS-CoV-2-positive oncological patient cohort. Analysis of variants and minority variants was performed using a validated bioinformatics pipeline. RESULTS: Among 54 oncological patients, we analyzed 12 samples of 6 patients, either serial nasopharyngeal swab samples or samples from the upper and lower respiratory tracts, by high-throughput sequencing. We identified amino acid changes D614G and P4715L as well as mutations at nucleotide positions 241 and 3037 in all samples. There were no other significant mutations, but we observed intra-host evolution in some minority variants, mainly in the ORF1ab gene. There was no significant mutation identified in the spike region and no minority variants common to several hosts. CONCLUSIONS: There was no major and rapid evolution of viral strains in this oncological patient cohort, but there was minority variant evolution, reflecting a dynamic pattern of quasi-species replication.

14.
Emerg Microbes Infect ; 10(1): 982-993, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33929935

RESUMO

Viral infections are the leading cause of childhood acute febrile illnesses motivating consultation in sub-Saharan Africa. The majority of causal viruses are never identified in low-resource clinical settings as such testing is either not part of routine screening or available diagnostic tools have limited ability to detect new/unexpected viral variants. An in-depth exploration of the blood virome is therefore necessary to clarify the potential viral origin of fever in children. Metagenomic next-generation sequencing is a powerful tool for such broad investigations, allowing the detection of RNA and DNA viral genomes. Here, we describe the blood virome of 816 febrile children (<5 years) presenting at outpatient departments in Dar es Salaam over one-year. We show that half of the patients (394/816) had at least one detected virus recognized as causes of human infection/disease (13.8% enteroviruses (enterovirus A, B, C, and rhinovirus A and C), 12% rotaviruses, 11% human herpesvirus type 6). Additionally, we report the detection of a large number of viruses (related to arthropod, vertebrate or mammalian viral species) not yet known to cause human infection/disease, highlighting those who should be on the radar, deserve specific attention in the febrile paediatric population and, more broadly, for surveillance of emerging pathogens.Trial registration: ClinicalTrials.gov identifier: NCT02225769.


Assuntos
Febre/virologia , Metagenômica/métodos , Viroses/sangue , Vírus/classificação , Pré-Escolar , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Estudos Retrospectivos , Análise de Sequência de DNA , Análise de Sequência de RNA , Tanzânia , Viroses/virologia , Vírus/genética , Vírus/isolamento & purificação
15.
Artigo em Inglês | MEDLINE | ID: mdl-33618012

RESUMO

OBJECTIVES: To report a case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection 6 months after the first infection in a young healthy female physician. Both episodes led to mild coronavirus disease 2019 (COVID-19). METHODS: SARS-CoV-2 infections were detected by real-time reverse transcriptase PCR (RT-PCR) on nasopharyngeal specimens. Reinfection was confirmed by whole-genome sequencing. Kinetics of total anti-S receptor binding domain immunoglobulins (Ig anti-S RBD), anti-nucleoprotein (anti-N) and neutralizing antibodies were determined in serial serum samples retrieved during both infection episodes. Memory B-cell responses were assessed at day 12 after reinfection. RESULTS: Whole-genome sequencing identified two different SARS-CoV-2 genomes both belonging to clade 20A, with only one nonsynonymous mutation in the spike protein and clustered with viruses circulating in Geneva (Switzerland) at the time of each of the corresponding episodes. Seroconversion was documented with low levels of total Ig anti-S RBD and anti-N antibodies at 1 month after the first infection, whereas neutralizing antibodies quickly declined after the first episode and then were boosted by the reinfection, with high titres detectable 4 days after symptom onset. A strong memory B-cell response was detected at day 12 after onset of symptoms during reinfection, indicating that the first episode elicited cellular memory responses. CONCLUSIONS: Rapid decline of neutralizing antibodies may put medical personnel at risk of reinfection, as shown in this case. However, reinfection leads to a significant boosting of previous immune responses. Larger cohorts of reinfected subjects with detailed descriptions of their immune responses are needed to define correlates of protection and their duration after infection.

16.
Emerg Infect Dis ; 27(2): 658-660, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496646

RESUMO

We report 3 cases of Puumala virus infection in a family in Switzerland in January 2019. Clinical manifestations of the infection ranged from mild influenza-like illness to fatal disease. This cluster illustrates the wide range of clinical manifestations of Old World hantavirus infections and the challenge of diagnosing travel-related hemorrhagic fevers.


Assuntos
Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Virus Puumala , Febre Hemorrágica com Síndrome Renal/diagnóstico , Febre Hemorrágica com Síndrome Renal/epidemiologia , Humanos , Virus Puumala/genética , Suíça/epidemiologia , Viagem , Doença Relacionada a Viagens
17.
mSphere ; 5(6)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177214

RESUMO

Viral shedding patterns and their correlations with immune responses are still poorly characterized in mild coronavirus (CoV) disease 2019 (COVID-19). We monitored shedding of viral RNA and infectious virus and characterized the immune response kinetics of the first five patients quarantined in Geneva, Switzerland. High viral loads and infectious virus shedding were observed from the respiratory tract despite mild symptoms, with isolation of infectious virus and prolonged positivity by reverse transcriptase PCR (RT-PCR) until days 7 and 19 after symptom onset, respectively. Robust innate responses characterized by increases in activated CD14+ CD16+ monocytes and cytokine responses were observed as early as 2 days after symptom onset. Cellular and humoral severe acute respiratory syndrome (SARS)-CoV-2-specific adaptive responses were detectable in all patients. Infectious virus shedding was limited to the first week after symptom onset. A strong innate response, characterized by mobilization of activated monocytes during the first days of infection and SARS-CoV-2-specific antibodies, was detectable even in patients with mild disease.IMPORTANCE This work is particularly important because it simultaneously assessed the virology, immunology, and clinical presentation of the same subjects, whereas other studies assess these separately. We describe the detailed viral and immune profiles of the first five patients infected by SARS-CoV-2 and quarantined in Geneva, Switzerland. Viral loads peaked at the very beginning of the disease, and infectious virus was shed only during the early acute phase of disease. No infectious virus could be isolated by culture 7 days after onset of symptoms, while viral RNA was still detectable for a prolonged period. Importantly, we saw that all patients, even those with mild symptoms, mount an innate response sufficient for viral control (characterized by early activated cytokines and monocyte responses) and develop specific immunity as well as cellular and humoral SARS-CoV-2-specific adaptive responses, which already begin to decline a few months after the resolution of symptoms.


Assuntos
Imunidade Adaptativa , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Imunidade Inata , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Carga Viral , Eliminação de Partículas Virais , Adulto , Idoso , Anticorpos Antivirais/metabolismo , Betacoronavirus/isolamento & purificação , Biomarcadores/metabolismo , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Citocinas/metabolismo , Humanos , Cinética , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/diagnóstico , SARS-CoV-2 , Índice de Gravidade de Doença
18.
Viruses ; 12(11)2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139591

RESUMO

The huge genetic diversity of circulating viruses is a challenge for diagnostic assays for emerging or rare viral diseases. High-throughput technology offers a new opportunity to explore the global virome of patients without preconception about the culpable pathogens. It requires a solid reference dataset to be accurate. Virosaurus has been designed to offer a non-biased, automatized and annotated database for clinical metagenomics studies and diagnosis. Raw viral sequences have been extracted from GenBank, and cleaned up to remove potentially erroneous sequences. Complete sequences have been identified for all genera infecting vertebrates, plants and other eukaryotes (insect, fungus, etc.). To facilitate the analysis of clinically relevant viruses, we have annotated all sequences with official and common virus names, acronym, genotypes, and genomic features (linear, circular, DNA, RNA, etc.). Sequences have been clustered to remove redundancy at 90% or 98% identity. The analysis of clustering results reveals the state of the virus genetic landscape knowledge. Because herpes and poxviruses were under-represented in complete genomes considering their potential diversity in nature, we used genes instead of complete genomes for those in Virosaurus.


Assuntos
Bases de Dados de Ácidos Nucleicos , Variação Genética , Análise de Sequência de DNA , Vírus/genética , Biologia Computacional , Genoma Viral , Metagenômica , Filogenia , Vírus/classificação
19.
Clin Microbiol Rev ; 33(4)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32847820

RESUMO

Viral primary infections and reactivations are common complications in patients after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) and are associated with high morbidity and mortality. Among these patients, viral infections are frequently associated with viremia. Beyond the usual well-known viruses that are part of the routine clinical management of transplant recipients, numerous other viral signatures or genomes can be identified in the blood of these patients. The identification of novel viral species and variants by metagenomic next-generation sequencing has opened up a new field of investigation and new paradigms. Thus, there is a need to thoroughly describe the state of knowledge in this field with a review of all viral infections that should be scrutinized in high-risk populations. Here, we review the eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated, such as members of the Polyomaviridae, Anelloviridae, Flaviviridae, and Astroviridae families. Current knowledge of the clinical significance of these viral infections with associated viremia among transplant recipients is also discussed. To ensure a comprehensive description in these two populations, individuals described as healthy (mostly blood donors) are considered for comparative purposes. The list of viruses that should be on the clinicians' radar is certainly incomplete and will expand, but the challenge is to identify those of possible clinical significance.


Assuntos
Sangue/virologia , Transplante de Células-Tronco Hematopoéticas/estatística & dados numéricos , Transplantados/estatística & dados numéricos , Transplantes/virologia , Viroma , Viroses/transmissão , Infecções por Citomegalovirus/transmissão , Infecções por Vírus Epstein-Barr/transmissão , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Viroses/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...