Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 41(9): 1637-1649.e11, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37652007

RESUMO

A high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however, understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect remains unknown. We report a comprehensive multidimensional modeling of brain functional analyses in the context of brain metastasis. By testing different preclinical models of brain metastasis from various primary sources and oncogenic profiles, we dissociated the heterogeneous impact on local field potential oscillatory activity from cortical and hippocampal areas that we detected from the homogeneous inter-model tumor size or glial response. In contrast, we report a potential underlying molecular program responsible for impairing neuronal crosstalk by scoring the transcriptomic and mutational profiles in a model-specific manner. Additionally, measurement of various brain activity readouts matched with machine learning strategies confirmed model-specific alterations that could help predict the presence and subtype of metastasis.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/genética , Encéfalo , Perfilação da Expressão Gênica , Aprendizado de Máquina , Mutação
2.
Semin Cell Dev Biol ; 111: 23-31, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32718852

RESUMO

Human brain organoids are self-organizing three-dimensional structures that emerge from human pluripotent stem cells and mimic aspects of the cellular composition and functionality of the developing human brain. Despite their impressive self-organizing capacity, organoids lack the stereotypic structural anatomy of their in vivo counterpart, making conventional analysis techniques underpowered to assess cellular composition and gene network regulation in organoids. Advances in single cell transcriptomics have recently allowed characterization and improvement of organoid protocols, as they continue to evolve, by enabling identification of cell types and states along with their developmental origins. In this review, we summarize recent approaches, progresses and challenges in resolving brain organoid's complexity through single-cell transcriptomics. We then discuss emerging technologies that may complement single-cell RNA sequencing by providing additional readouts of cellular states to generate an organ-level view of developmental processes. Altogether, these integrative technologies will allow monitoring of global gene regulation in thousands of individual cells and will offer an unprecedented opportunity to investigate features of human brain development and disease across multiple cellular modalities and with cell-type resolution.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/genética , Malformações do Sistema Nervoso/genética , Organoides/metabolismo , Análise de Célula Única/métodos , Transcriptoma , Encéfalo/patologia , Diferenciação Celular , Linhagem da Célula/genética , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica , Humanos , Modelos Biológicos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/patologia , Malformações do Sistema Nervoso/fisiopatologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Organoides/patologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Análise de Sequência de RNA
3.
Nat Neurosci ; 21(1): 63-71, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29230053

RESUMO

Accumulating evidence support a causal link between Zika virus (ZIKV) infection during gestation and congenital microcephaly. However, the mechanism of ZIKV-associated microcephaly remains unclear. We combined analyses of ZIKV-infected human fetuses, cultured human neural stem cells and mouse embryos to understand how ZIKV induces microcephaly. We show that ZIKV triggers endoplasmic reticulum stress and unfolded protein response in the cerebral cortex of infected postmortem human fetuses as well as in cultured human neural stem cells. After intracerebral and intraplacental inoculation of ZIKV in mouse embryos, we show that it triggers endoplasmic reticulum stress in embryonic brains in vivo. This perturbs a physiological unfolded protein response within cortical progenitors that controls neurogenesis. Thus, ZIKV-infected progenitors generate fewer projection neurons that eventually settle in the cerebral cortex, whereupon sustained endoplasmic reticulum stress leads to apoptosis. Furthermore, we demonstrate that administration of pharmacological inhibitors of unfolded protein response counteracts these pathophysiological mechanisms and prevents microcephaly in ZIKV-infected mouse embryos. Such defects are specific to ZIKV, as they are not observed upon intraplacental injection of other related flaviviruses in mice.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Microcefalia/etiologia , Microcefalia/metabolismo , Desdobramento de Proteína , Infecção por Zika virus/complicações , Zika virus/patogenicidade , Fator 3 Ativador da Transcrição/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Embrião de Mamíferos , Feto , Regulação Viral da Expressão Gênica , Humanos , Interferon-alfa/genética , Interferon-alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microcefalia/prevenção & controle , Microcefalia/virologia , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/patologia , Infecção por Zika virus/patologia
4.
Mol Cell Biol ; 36(23): 2967-2982, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27644329

RESUMO

The phosphoinositide (PI) 3-kinase/Akt signaling pathway plays essential roles during neuronal development. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) coordinates the PI 3-kinase signals by activating 23 kinases of the AGC family, including Akt. Phosphorylation of a conserved docking site in the substrate is a requisite for PDK1 to recognize, phosphorylate, and activate most of these kinases, with the exception of Akt. We exploited this differential mechanism of regulation by generating neuron-specific conditional knock-in mice expressing a mutant form of PDK1, L155E, in which the substrate-docking site binding motif, termed the PIF pocket, was disrupted. As a consequence, activation of all the PDK1 substrates tested except Akt was abolished. The mice exhibited microcephaly, altered cortical layering, and reduced circuitry, leading to cognitive deficits and exacerbated disruptive behavior combined with diminished motivation. The abnormal patterning of the adult brain arises from the reduced ability of the embryonic neurons to polarize and extend their axons, highlighting the essential roles that the PDK1 signaling beyond Akt plays in mediating the neuronal responses that regulate brain development.

6.
Cell Cycle ; 13(20): 3164-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25485494

RESUMO

The PI3K/PDK1/PKB signaling pathway plays essential roles in regulating neuronal survival, differentiation and plasticity in response to neurotrophic factors, neurotransmitters and ion channels. Both PDK1 and PKB can interact at the plasma membrane with a phosphoinositide synthesized by PI3K, the second messenger PtdIns(3,4,5)P3, enabling PDK1 to phosphorylate and activate PKB. In the PDK1 K465E knock-in mice expressing a mutant form of PDK1 incapable of phosphoinositide binding, activation of PKB was markedly affected, but not totally abolished. It has been recently proposed that in the absence of PtdIns(3,4,5)P3 binding, PDK1 can still moderately activate PKB due to a docking site-mediated interaction of these 2 kinases. A recent report has uncovered that in the PDK1 K465E mice neurons, a PKB signal threshold was sufficient to support neuronal survival responses, whereas neuritogenesis, neuronal polarization and axon outgrowth were severely impaired. We propose here that the low-efficiency mechanism of PKB activation observed in the PDK1 K465E mice might represent the ancestral mechanism responsible for the essential functions of this pathway, while the phosphoinositide-dependent activation should be considered an evolutionary innovation that enabled the acquisition of novel functions.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Camundongos , Camundongos Mutantes , Neurônios/metabolismo , Fosfatidilinositóis/metabolismo
7.
Mol Cell Biol ; 33(5): 1027-40, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23275438

RESUMO

3-Phosphoinositide-dependent protein kinase 1 (PDK1) operates in cells in response to phosphoinositide 3-kinase activation and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] production by activating a number of AGC kinases, including protein kinase B (PKB)/Akt. Both PDK1 and PKB contain pleckstrin homology (PH) domains that interact with the PtdIns(3,4,5)P(3) second messenger. Disrupting the interaction of the PDK1 PH domain with phosphoinositides by expressing the PDK1 K465E knock-in mutation resulted in mice with reduced PKB activation. We explored the physiological consequences of this biochemical lesion in the central nervous system. The PDK1 knock-in mice displayed a reduced brain size due to a reduction in neuronal cell size rather than cell number. Reduced BDNF-induced phosphorylation of PKB at Thr308, the PDK1 site, was observed in the mutant neurons, which was not rate limiting for the phosphorylation of those PKB substrates governing neuronal survival and apoptosis, such as FOXO1 or glycogen synthase kinase 3 (GSK3). Accordingly, the integrity of the PDK1 PH domain was not essential to support the survival of different embryonic neuronal populations analyzed. In contrast, PKB-mediated phosphorylation of PRAS40 and TSC2, allowing optimal mTORC1 activation and brain-specific kinase (BRSK) protein synthesis, was markedly reduced in the mutant mice, leading to impaired neuronal growth and differentiation.


Assuntos
Neurogênese , Neurônios/citologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Encéfalo/anatomia & histologia , Encéfalo/citologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular , Células Cultivadas , Ativação Enzimática , Técnicas de Introdução de Genes , Humanos , Camundongos , Mutação , Neurônios/metabolismo , Tamanho do Órgão , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...