Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543607

RESUMO

Our knowledge regarding the role of the microbiome in fish health has been steadily increasing in the last decade, especially for species of commercial interest. Conversely, relatively few studies focus on the microbiomes of wild fish, especially apex predators like sharks, due to lower economic interest and greater difficulty in obtaining samples. Studies investigating microbiome differences between diverse anatomical locations of sharks are limited, and the majority of the available studies are focused on the microbial diversity present on shark teeth, with the aim of preventing infections due to bites of these animals or evaluating the presence of certain pathogens in healthy or diseased specimens. Here, we investigated the skin, mouth, gills, and cloaca microbiomes of five individuals of two phylogenetically distant species of sharks (Prionace glauca and Somniosus rostratus) to obtain a better understanding of the diversity regarding the microbiomes of these animals, how they change throughout different body parts, and how much they are influenced and determined by the ecology and evolutionary relationship between host and microbiome. To confirm the taxonomy of the sharks under study, we barcoded the specimens by sequencing the mtDNA COI from a biopsy of their skin. Microbial diversity based on the 16S rRNA gene reveals that partially overlapping microbiomes inhabit different body parts of each shark species, while the communities are distinct between the two species. Our results suggest that sharks' microbiome species-specific differences are controlled by the ecology of the shark species. This is the first study comparatively analyzing the microbiome diversity of different anatomical locations in two shark species of the Mediterranean Sea.

2.
Front Microbiol ; 14: 1215529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664111

RESUMO

The space race is entering a new era of exploration, in which the number of robotic and human missions to various places in our solar system is rapidly increasing. Despite the recent advances in propulsion and life support technologies, there is a growing need to perform analytical measurements and laboratory experiments across diverse domains of science, while keeping low payload requirements. In this context, lab-on-a-chip nanobiosensors appear to be an emerging technology capable of revolutionizing space exploration, given their low footprint, high accuracy, and low payload requirements. To date, only some approaches for monitoring astronaut health in spacecraft environments have been reported. Although non-invasive molecular diagnostics, like lab-on-a-chip technology, are expected to improve the quality of long-term space missions, their application to monitor microbiological and environmental variables is rarely reported, even for analogous extreme environments on Earth. The possibility of evaluating the occurrence of unknown or unexpected species, identifying redox gradients relevant to microbial metabolism, or testing for specific possible biosignatures, will play a key role in the future of space microbiology. In this review, we will examine the current and potential roles of lab-on-a-chip technology in space exploration and in extreme environment investigation, reporting what has been tested so far, and clarifying the direction toward which the newly developed technologies of portable lab-on-a-chip sensors are heading for exploration in extreme environments and in space.

3.
Front Microbiol ; 14: 1134114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637107

RESUMO

Shallow-water hydrothermal vents are unique marine environments ubiquitous along the coast of volcanically active regions of the planet. In contrast to their deep-sea counterparts, primary production at shallow-water vents relies on both photoautotrophy and chemoautotrophy. Such processes are supported by a range of geochemical regimes driven by different geological settings. The Aeolian archipelago, located in the southern Tyrrhenian sea, is characterized by intense hydrothermal activity and harbors some of the best sampled shallow-water vents of the Mediterranean Sea. Despite this, the correlation between microbial diversity, geochemical regimes and geological settings of the different volcanic islands of the archipelago is largely unknown. Here, we report the microbial diversity associated with six distinct shallow-water hydrothermal vents of the Aeolian Islands using a combination of 16S rRNA amplicon sequencing along with physicochemical and geochemical measurements. Samples were collected from biofilms, fluids and sediments from shallow vents on the islands of Lipari, Panarea, Salina, and Vulcano. Two new shallow vent locations are described here for the first time. Our results show the presence of diverse microbial communities consistent in their composition with the local geochemical regimes. The shallow water vents of the Aeolian Islands harbor highly diverse microbial community and should be included in future conservation efforts.

4.
PLoS One ; 18(8): e0281277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37594978

RESUMO

Microbial communities in terrestrial geothermal systems often contain chemolithoautotrophs with well-characterized distributions and metabolic capabilities. However, the extent to which organic matter produced by these chemolithoautotrophs supports heterotrophs remains largely unknown. Here we compared the abundance and activity of peptidases and carbohydrate active enzymes (CAZymes) that are predicted to be extracellular identified in metagenomic assemblies from 63 springs in the Central American and the Andean convergent margin (Argentinian backarc of the Central Volcanic Zone), as well as the plume-influenced spreading center in Iceland. All assemblies contain two orders of magnitude more peptidases than CAZymes, suggesting that the microorganisms more often use proteins for their carbon and/or nitrogen acquisition instead of complex sugars. The CAZy families in highest abundance are GH23 and CBM50, and the most abundant peptidase families are M23 and C26, all four of which degrade peptidoglycan found in bacterial cells. This implies that the heterotrophic community relies on autochthonous dead cell biomass, rather than allochthonous plant matter, for organic material. Enzymes involved in the degradation of cyanobacterial- and algal-derived compounds are in lower abundance at every site, with volcanic sites having more enzymes degrading cyanobacterial compounds and non-volcanic sites having more enzymes degrading algal compounds. Activity assays showed that many of these enzyme classes are active in these samples. High temperature sites (> 80°C) had similar extracellular carbon-degrading enzymes regardless of their province, suggesting a less well-developed population of secondary consumers at these sites, possibly connected with the limited extent of the subsurface biosphere in these high temperature sites. We conclude that in < 80°C springs, chemolithoautotrophic production supports heterotrophs capable of degrading a wide range of organic compounds that do not vary by geological province, even though the taxonomic and respiratory repertoire of chemolithoautotrophs and heterotrophs differ greatly across these regions.

5.
Essays Biochem ; 67(4): 653-670, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503682

RESUMO

Life sustains itself using energy generated by thermodynamic disequilibria, commonly existing as redox disequilibria. Metals are significant players in controlling redox reactions, as they are essential components of the engine that life uses to tap into the thermodynamic disequilibria necessary for metabolism. The number of proteins that evolved to catalyze redox reactions is extraordinary, as is the diversification level of metal cofactors and catalytic domain structures involved. Notwithstanding the importance of the topic, the relationship between metals and the redox reactions they are involved in has been poorly explored. This work reviews the structure and function of different prokaryotic organometallic-protein complexes, highlighting their pivotal role in controlling biogeochemistry. We focus on a specific subset of metal-containing oxidoreductases (EC1 or EC7.1), which are directly involved in biogeochemical cycles, i.e., at least one substrate or product is a small inorganic molecule that is or can be exchanged with the environment. Based on these inclusion criteria, we select and report 59 metalloenzymes, describing the organometallic structure of their active sites, the redox reactions in which they are involved, and their biogeochemical roles.


Assuntos
Metaloproteínas , Oxirredutases , Oxirredutases/química , Oxirredutases/metabolismo , Metais/química , Metais/metabolismo , Oxirredução , Metaloproteínas/química , Metaloproteínas/metabolismo , Domínio Catalítico
6.
Microorganisms ; 11(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985275

RESUMO

The Antarctic Circumpolar Current (ACC) is the major current in the Southern Ocean, isolating the warm stratified subtropical waters from the more homogeneous cold polar waters. The ACC flows from west to east around Antarctica and generates an overturning circulation by fostering deep-cold water upwelling and the formation of new water masses, thus affecting the Earth's heat balance and the global distribution of carbon. The ACC is characterized by several water mass boundaries or fronts, known as the Subtropical Front (STF), Subantarctic Front (SAF), Polar Front (PF), and South Antarctic Circumpolar Current Front (SACCF), identified by typical physical and chemical properties. While the physical characteristics of these fronts have been characterized, there is still poor information regarding the microbial diversity of this area. Here we present the surface water bacterioplankton community structure based on 16S rRNA sequencing from 13 stations sampled in 2017 between New Zealand to the Ross Sea crossing the ACC Fronts. Our results show a distinct succession in the dominant bacterial phylotypes present in the different water masses and suggest a strong role of sea surface temperatures and the availability of Carbon and Nitrogen in controlling community composition. This work represents an important baseline for future studies on the response of Southern Ocean epipelagic microbial communities to climate change.

7.
Methods Mol Biol ; 2498: 77-88, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35727541

RESUMO

Comparative genomics is a research field that allows comparison between genomes of different life forms providing information on the organization of the compared genomes, both in terms of structure and encoded functions. Moreover, this approach provides a powerful tool to study and understand the evolutionary changes and adaptation among organisms. Comparative genomics can be used to compare phylogenetically close marine organisms showing different vital strategies and lifestyles and obtain information regarding specific adaptations and/or their evolutionary history. Here we report a basic comparative genomics protocol to extrapolate evolutionary information about a protein of interest conserved across diverse marine microbes. The outlined approach can be used in a number of different settings and might help to gain new insights into the evolution and adaptation of marine microorganisms.


Assuntos
Evolução Molecular , Genômica , Adaptação Fisiológica , Organismos Aquáticos/genética , Genoma , Filogenia
8.
Methods Mol Biol ; 2498: 265-281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35727549

RESUMO

Heterologous expression is an easy and broadly applicable experimental approach widely used to investigate protein functions without the need to genetically manipulate the original host. The approach is used to obtain large quantities of the desired protein, which can be further analyzed from a biochemical, structural, and functional perspective. The expression system consists of three main components: (1) a foreign DNA sequence coding for the protein of interest; (2) a suitable expression vector; (3) a suitable host (bacterial, yeast, or mammalian cells) which does not encode or express the protein of interest. Here, we show how to apply an Escherichia coli-based expression system to overexpress protein encoding genes from marine microbes.


Assuntos
Escherichia coli , Genes Bacterianos , Animais , Bactérias/genética , Escherichia coli/genética , Mamíferos/genética , Proteínas Recombinantes/genética
9.
Front Microbiol ; 13: 722900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154048

RESUMO

Primary productivity in the Ross Sea region is characterized by intense phytoplankton blooms whose temporal and spatial distribution are driven by changes in environmental conditions as well as interactions with the bacterioplankton community. However, the number of studies reporting the simultaneous diversity of the phytoplankton and bacterioplankton in Antarctic waters are limited. Here, we report data on the bacterial diversity in relation to phytoplankton community structure in the surface waters of the Ross Sea during the Austral summer 2017. Our results show partially overlapping bacterioplankton communities between the stations located in the Terra Nova Bay (TNB) coastal waters and the Ross Sea Open Waters (RSOWs), with a dominance of members belonging to the bacterial phyla Bacteroidetes and Proteobacteria. In the TNB coastal area, microbial communities were characterized by a higher abundance of sequences related to heterotrophic bacterial genera such as Polaribacter spp., together with higher phytoplankton biomass and higher relative abundance of diatoms. On the contrary, the phytoplankton biomass in the RSOW were lower, with relatively higher contribution of haptophytes and a higher abundance of sequences related to oligotrophic and mixothrophic bacterial groups like the Oligotrophic Marine Gammaproteobacteria (OMG) group and SAR11. We show that the rate of diversity change between the two locations is influenced by both abiotic (salinity and the nitrogen to phosphorus ratio) and biotic (phytoplankton community structure) factors. Our data provide new insight into the coexistence of the bacterioplankton and phytoplankton in Antarctic waters, suggesting that specific rather than random interaction contribute to the organic matter cycling in the Southern Ocean.

10.
Front Microbiol ; 12: 715678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589073

RESUMO

Massive application of chemical fertilizers and pesticides has been the main strategy used to cope with the rising crop demands in the last decades. The indiscriminate use of chemicals while providing a temporary solution to food demand has led to a decrease in crop productivity and an increase in the environmental impact of modern agriculture. A sustainable alternative to the use of agrochemicals is the use of microorganisms naturally capable of enhancing plant growth and protecting crops from pests known as Plant-Growth-Promoting Bacteria (PGPB). Aim of the present study was to isolate and characterize PGPB from salt-pans sand samples with activities associated to plant fitness increase. To survive high salinity, salt-tolerant microbes produce a broad range of compounds with heterogeneous biological activities that are potentially beneficial for plant growth. A total of 20 halophilic spore-forming bacteria have been screened in vitro for phyto-beneficial traits and compared with other two members of Bacillus genus recently isolated from the rhizosphere of the same collection site and characterized as potential biocontrol agents. Whole-genome analysis on seven selected strains confirmed the presence of numerous gene clusters with PGP and biocontrol functions and of novel secondary-metabolite biosynthetic genes, which could exert beneficial impacts on plant growth and protection. The predicted biocontrol potential was confirmed in dual culture assays against several phytopathogenic fungi and bacteria. Interestingly, the presence of predicted gene clusters with known biocontrol functions in some of the isolates was not predictive of the in vitro results, supporting the need of combining laboratory assays and genome mining in PGPB identification for future applications.

11.
FEMS Microbiol Lett ; 325(1): 64-70, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22092863

RESUMO

Citrobacter rodentium is a mouse pathogen that, because of its similarities with human enteropathogenic (EPEC) and enterohemorrhagic (EHEC) strains of Escherichia coli is widely used as a model system for in vivo and in vitro studies. Similarly to EPEC and EHEC, C. rodentium carries the LEE (locus of enterocyte effacement) pathogenicity island, encoding virulence factors essential for causing transmissible colonic hyperplasia in mice by attaching and effacing (A/E) lesions. Expression of the genes carried by the LEE pathogenicity island is controlled by complex networks of transcriptional factors, including the global regulators H-NS, IHF, and Fis. In this study, we analyzed the role of Lrp, another global regulator of gene expression in enteric bacteria, on the expression of LEE genes of C. rodentium. To this aim, a real-time PCR approach was used and revealed a negative role of Lrp on the expression of all analyzed LEE genes. Mobility-shift experiments indicated that Lrp action is direct on LEE1 and indirect on all other analyzed LEE genes.


Assuntos
Proteínas de Bactérias/metabolismo , Citrobacter rodentium/genética , Citrobacter rodentium/patogenicidade , Regulação Bacteriana da Expressão Gênica , Proteína Reguladora de Resposta a Leucina/metabolismo , Fatores de Virulência/metabolismo , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Ilhas Genômicas , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real
12.
Microb Cell Fact ; 5: 29, 2006 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16972988

RESUMO

BACKGROUND: RecA is a highly conserved prokaryotic protein that not only plays several important roles connected to DNA metabolism but also affects the cell response to various stress conditions. While RecA is highly conserved, the mechanism of transcriptional regulation of its structural gene is less conserved. In Escherichia coli the LexA protein acts as a recA repressor and is able, in response to DNA damage, of RecA-promoted self-cleavage, thus allowing recA transcription. The LexA paradigm, although confirmed in a wide number of cases, is not universally valid. In some cases LexA does not control recA transcription while in other RecA-containing bacteria a LexA homologue is not present. RESULTS: We have studied the recA transcriptional regulation in S. thermophilus, a bacterium that does not contain a LexA homologue. We have characterized the promoter region of the gene and observed that its expression is strongly induced by DNA damage. The analysis of deletion mutants and of translational gene fusions showed that a DNA region of 83 base pairs, containing the recA promoter and the transcriptional start site, is sufficient to ensure normal expression of the gene. Unlike LexA of E. coli, the factor controlling recA expression in S. thermophilus acts in a RecA-independent way since recA induction was observed in a strain carrying a recA null mutation. CONCLUSION: In S. thermophilus, as in many other bacteria,recA expression is strongly induced by DNA damage, however, in this organism expression of the gene is controlled by a factor different from those well characterized in other bacteria. A small DNA region extending from 62 base pairs upstream of the recA transcriptional start site to 21 base pairs downstream of it carries all the information needed for normal regulation of the S. thermophilus recA gene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...