Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513706

RESUMO

Madagascar is home to an extraordinary diversity of endemic mammals hosting several zoonotic pathogens. Although the African origin of Malagasy mammals has been addressed for a number of volant and terrestrial taxa, the origin of their hosted zoonotic pathogens is currently unknown. Using bats and Leptospira infections as a model system, we tested whether Malagasy mammal hosts acquired these infections on the island following colonization events, or alternatively brought these bacteria from continental Africa. We first described the genetic diversity of pathogenic Leptospira infecting bats from Mozambique and then tested through analyses of molecular variance (AMOVA) whether the genetic diversity of Leptospira hosted by bats from Mozambique, Madagascar and Comoros is structured by geography or by their host phylogeny. This study reveals a wide diversity of Leptospira lineages shed by bats from Mozambique. AMOVA strongly supports that the diversity of Leptospira sequences obtained from bats sampled in Mozambique, Madagascar, and Comoros is structured according to bat phylogeny. Presented data show that a number of Leptospira lineages detected in bat congeners from continental Africa and Madagascar are imbedded within monophyletic clades, strongly suggesting that bat colonists have indeed originally crossed the Mozambique Channel while infected with pathogenic Leptospira.

2.
Mater Sci Eng C Mater Biol Appl ; 135: 112694, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35581079

RESUMO

Scaffolds capable of mediating overlapping multi-cellular activities to support the different phases of wound healing while preventing scarring are essential for tissue regeneration. The potential of polysucrose as hydrogels and electrospun mats for wound healing was evaluated in vitro by seeding fibroblasts, endothelial cells and macrophages either singly or in combination. It was found that the scaffold architecture impacted cell behaviour. Electrospun mats promoted fibroblasts flattened morphology while polysucrose methacrylate (PSucMA) hydrogels promoted fibroblast spheroids formation, accentuated in the presence of endothelial cells. Hydrogels exhibited lower inflammatory response than mats and curcumin loaded scaffolds reduced TNF-α production. In vivo biocompatibility of the hydrogels tested on Wistar rats was superior to electrospun mats. In vivo wound healing studies indicated that PSucMA hydrogels integrated the surrounding tissue with better cellular infiltration and proliferation throughout the entire wound region. PSucMA hydrogels led to scarless wound closure comparable with commercially available gels.


Assuntos
Hidrogéis , Nanofibras , Animais , Células Endoteliais , Fibroblastos , Hidrogéis/farmacologia , Ratos , Ratos Wistar , Pele , Alicerces Teciduais , Cicatrização/fisiologia
4.
Sci Rep ; 12(1): 5999, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397679

RESUMO

The newly identified coronavirus SARS-CoV-2 is responsible for the worldwide pandemic COVID-19. Considerable efforts have been devoted for the development of effective vaccine strategies against COVID-19. The SARS-CoV-2 spike protein has been identified as the major antigen candidate for the development of COVID-19 vaccines. The Pfizer-BioNTech COVID-19 vaccine COMIRNATY is a lipid nanoparticle-encapsulated mRNA encoding a full-length and prefusion-stabilized SARS-CoV-2 spike protein. In the present study, synthetic peptide-based ELISA assays were performed to identify linear B-cell epitopes into the spike protein that contribute to elicitation of antibody response in COMIRNATY-vaccinated individuals. The synthetic S2P6 peptide containing the spike residues 1138/1169 and to a lesser extent, the synthetic S1P4 peptide containing the spike residues 616/644 were recognized by the immune sera from COMIRNATY vaccine recipients but not COVID-19 recovered patients. We assume that the synthetic S2P6 peptide and to a lesser extent the synthetic S1P4 peptide, could be of interest to measure the dynamic of antibody response to COVID-19 mRNA vaccines. The S2P6 peptide has been identified as immunogenic in adult BALB/c mice that received protein-peptide conjugates in a prime-boost schedule. This raises the question on the role of the B-cell epitope peptide containing the SARS-CoV-2 spike residues 1138/1169 in protective efficacy of the Pfizer-BioNTech COVID-19 vaccine COMIRNATY.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Epitopos de Linfócito B , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Lipossomos , Camundongos , Nanopartículas , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia
5.
Biomater Sci ; 9(15): 5259-5274, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34164641

RESUMO

The use of non-invasive scaffold materials which can mimic the innate piezoelectric properties of biological tissues is a promising strategy to promote native tissue regeneration. Piezoelectric and cell instructive electrospun core-shell PDX/PHBV mats have been engineered to promote native tissue and skin regeneration. In depth physicochemical characterisation, in vitro and in vivo studies of a rat model showed that the 20/80 PDX/PHBV composition possessed the right balance of physicochemical and piezoelectric properties leading to enhanced fibroblast stimulation, proliferation and migration, reduced fibroblast-mediated contraction and macrophage-induced inflammation, improved keratinocyte proliferation, proper balance between endothelial cell phenotypes, decreased in vivo fibrosis and accelerated in vivo scarless wound regeneration. Overall, this study highlights the importance of exploiting cell-material interactions to match tissue biological needs to sustain the wound healing cascade.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Fibroblastos , Poliésteres , Ratos , Cicatrização
6.
Sci Rep ; 10(1): 7239, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350316

RESUMO

Leptospirosis is caused by pathogenic Leptospira transmitted through contact with contaminated environments. Most mammalian species are infectable by Leptospira but only few act as efficient reservoir being capable of establishing long term kidney colonization and shedding Leptospira in urine. In Madagascar, a large diversity of pathogenic Leptospira display a tight specificity towards their endemic volant or terrestrial mammalian hosts. The basis of this specificity is unknown: it may indicate some genetically determined compatibility between host cells and bacteria or only reflect ecological constraints preventing contacts between specific hosts. In this study, Rattus norvegicus was experimentally infected with either Leptospira interrogans, Leptospira borgpetersenii or Leptospira mayottensis isolated from rats, bats or tenrecs, respectively. Leptospira borgpetersenii and L. mayottensis do not support renal colonization as featured by no shedding of live bacteria in urine and low level and sporadic detection of Leptospira DNA in kidneys. In contrast 2 out of the 7 R. norvegicus challenged with L. interrogans developed renal colonization and intense Leptospira shedding in urine throughout the 3 months of experimental infection. These data suggest that host-Leptospira specificity in this biodiversity hotspot is driven at least in part by genetic determinants likely resulting from long-term co-diversification processes.


Assuntos
Biodiversidade , Leptospira , Leptospirose , Animais , DNA Bacteriano/metabolismo , Feminino , Rim/metabolismo , Rim/microbiologia , Rim/patologia , Leptospira/isolamento & purificação , Leptospira/metabolismo , Leptospira/patogenicidade , Leptospirose/metabolismo , Leptospirose/microbiologia , Leptospirose/patologia , Ratos , Ratos Wistar , Especificidade da Espécie
7.
Front Microbiol ; 10: 382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915044

RESUMO

Leptospirosis is one of the most widespread zoonoses worldwide, with highest incidence reported on tropical islands. Recent investigations carried out in a One-Health framework have revealed a wide diversity of pathogenic Leptospira lineages on the different islands of Western Indian Ocean carried out by a large diversity of mammal reservoirs, including domestic and wild fauna. Using golden Syrian hamsters as a model of acute infection, we studied the virulence of Leptospira interrogans, L. mayottensis, and L. borgpetersenii isolates obtained from rats, tenrecs, and bats, respectively. Hamsters were inoculated with 2.108 bacterial cells and monitored for 1 month. The L. interrogans isolate proved to be the most pathogenic while L. mayottensis and L. borgpetersenii isolates induced no clinical symptoms in the infected hamsters. High leptospiral DNA amounts were also detected in the urine and organs of hamsters infected with the L. interrogans isolate while L. mayottensis and L. borgpetersenii isolates mostly failed to disseminate into the organism. In addition, histological damage was more pronounced in the kidneys and lungs of hamsters infected with the L. interrogans isolate. Altogether, these data support that Leptospira strains shed by mammals endemic to this insular ecosystem (L. mayottensis and L. borgpetersenii isolates) are less pathogenic than the L. interrogans rat-borne isolate. These results may provide a relevant framework for understanding the contrasting epidemiology of human leptospirosis observed among Western Indian Ocean islands.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30533730

RESUMO

Leptospirosis is a zoonosis caused by Leptospira, a diversified genus containing more than 10 pathogenic species. Tenrecs are small terrestrial mammals endemic in the Malagasy region and are known to be reservoirs of the recently described species Leptospira mayottensis. We report the complete genome sequences of three L. mayottensis strains isolated from two tenrec species.

9.
PLoS Negl Trop Dis ; 10(8): e0004933, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27574792

RESUMO

Leptospirosis is a bacterial zoonosis of major concern on tropical islands. Human populations on western Indian Ocean islands are strongly affected by the disease although each archipelago shows contrasting epidemiology. For instance, Mayotte, part of the Comoros Archipelago, differs from the other neighbouring islands by a high diversity of Leptospira species infecting humans that includes Leptospira mayottensis, a species thought to be unique to this island. Using bacterial culture, molecular detection and typing, the present study explored the wild and domestic local mammalian fauna for renal carriage of leptospires and addressed the genetic relationships of the infecting strains with local isolates obtained from acute human cases and with Leptospira strains hosted by mammal species endemic to nearby Madagascar. Tenrec (Tenrec ecaudatus, Family Tenrecidae), a terrestrial mammal introduced from Madagascar, is identified as a reservoir of L. mayottensis. All isolated L. mayottensis sequence types form a monophyletic clade that includes Leptospira strains infecting humans and tenrecs on Mayotte, as well as two other Malagasy endemic tenrecid species of the genus Microgale. The lower diversity of L. mayottensis in tenrecs from Mayotte, compared to that occurring in Madagascar, suggests that L. mayottensis has indeed a Malagasy origin. This study also showed that introduced rats (Rattus rattus) and dogs are probably the main reservoirs of Leptospira borgpetersenii and Leptospira kirschneri, both bacteria being prevalent in local clinical cases. Data emphasize the epidemiological link between the two neighbouring islands and the role of introduced small mammals in shaping the local epidemiology of leptospirosis.


Assuntos
Reservatórios de Doenças/microbiologia , Eulipotyphla/microbiologia , Leptospira/isolamento & purificação , Leptospirose/transmissão , Animais , Comores , DNA Bacteriano/isolamento & purificação , Genótipo , Humanos , Espécies Introduzidas , Madagáscar , Filogenia , Zoonoses/transmissão
10.
PLoS Negl Trop Dis ; 10(6): e0004733, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27294677

RESUMO

BACKGROUND: Although leptospirosis is a zoonosis of major concern on tropical islands, the molecular epidemiology of the disease aiming at linking human cases to specific animal reservoirs has been rarely explored within these peculiar ecosystems. METHODOLOGY/PRINCIPAL FINDINGS: Five species of wild small mammals (n = 995) as well as domestic animals (n = 101) were screened for Leptospira infection on Reunion Island; positive samples were subsequently genotyped and compared to Leptospira from clinical cases diagnosed in 2012-2013 (n = 66), using MLST analysis. We identified two pathogenic species in human cases, namely Leptospira interrogans and Leptospira borgpetersenii. Leptospira interrogans was by far dominant both in clinical samples (96.6%) and in infected animal samples (95.8%), with Rattus spp and dogs being its exclusive carriers. The genetic diversity within L. interrogans was apparently limited to two sequence types (STs): ST02, identified among most clinical samples and in all rats with complete MLST, and ST34, identified in six humans, but not in rats. Noteworthy, L. interrogans detected in two stray dogs partially matched with ST02 and ST34. Leptospira borgpetersenii was identified in two clinical samples only (3.4%), as well as in cows and mice; four haplotypes were identified, of which two seemingly identical in clinical and animal samples. Leptospira borgpetersenii haplotypes detected in human cases were clearly distinct from the lineage detected so far in the endemic bat species Mormopterus francoismoutoui, thus excluding a role for this volant mammal in the local human epidemiology of the disease. CONCLUSIONS/SIGNIFICANCE: Our data confirm rats as a major reservoir of Leptospira on Reunion Island, but also pinpoint a possible role of dogs, cows and mice in the local epidemiology of human leptospirosis. This study shows that a comprehensive molecular characterization of pathogenic Leptospira in both clinical and animal samples helps to gaining insight into leptospirosis epidemiology within a specific environmental setting.


Assuntos
Reservatórios de Doenças/veterinária , Leptospira/isolamento & purificação , Leptospirose/epidemiologia , Leptospirose/transmissão , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/transmissão , Animais , Bovinos , Quirópteros , Surtos de Doenças , Cães , Variação Genética , Genótipo , Humanos , Incidência , Leptospira/genética , Prevalência , Reunião/epidemiologia , Doenças dos Roedores/microbiologia , Roedores , Zoonoses
11.
Appl Environ Microbiol ; 82(6): 1778-88, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26746715

RESUMO

The Nycteribiidae are obligate blood-sucking Diptera (Hippoboscoidea) flies that parasitize bats. Depending on species, these wingless flies exhibit either high specialism or generalism toward their hosts, which may in turn have important consequences in terms of their associated microbial community structure. Bats have been hypothesized to be reservoirs of numerous infectious agents, some of which have recently emerged in human populations. Thus, bat flies may be important in the epidemiology and transmission of some of these bat-borne infectious diseases, acting either directly as arthropod vectors or indirectly by shaping pathogen communities among bat populations. In addition, bat flies commonly have associations with heritable bacterial endosymbionts that inhabit insect cells and depend on maternal transmission through egg cytoplasm to ensure their transmission. Some of these heritable bacteria are likely obligate mutualists required to support bat fly development, but others are facultative symbionts with unknown effects. Here, we present bacterial community profiles that were obtained from seven bat fly species, representing five genera, parasitizing bats from the Malagasy region. The observed bacterial diversity includes Rickettsia, Wolbachia, and several Arsenophonus-like organisms, as well as other members of the Enterobacteriales and a widespread association of Bartonella bacteria from bat flies of all five genera. Using the well-described host specificity of these flies and data on community structure from selected bacterial taxa with either vertical or horizontal transmission, we show that host/vector specificity and transmission mode are important drivers of bacterial community structure.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Dípteros/microbiologia , Microbiota , Animais , Quirópteros/parasitologia , Madagáscar
12.
J Virol ; 89(21): 11030-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26311875

RESUMO

UNLABELLED: The A7(74) strain of Semliki Forest virus (SFV; genus Alphavirus) is avirulent in adult mice, while the L10 strain is virulent in mice of all ages. It has been previously demonstrated that this phenotypic difference is associated with nonstructural protein 3 (nsP3). Consensus clones of L10 (designated SFV6) and A7(74) (designated A774wt) were used to construct a panel of recombinant viruses. The insertion of nsP3 from A774wt into the SFV6 backbone had a minor effect on the virulence of the resulting recombinant virus. Conversely, insertion of nsP3 from SFV6 into the A774wt backbone or replacement of A774wt nsP3 with two copies of nsP3 from SFV6 resulted in virulent viruses. Unexpectedly, duplication of nsP3-encoding sequences also resulted in elevated levels of nsP4, revealing that nsP3 is involved in the stabilization of nsP4. Interestingly, replacement of nsP3 of SFV6 with that of A774wt resulted in a virulent virus; the virulence of this recombinant was strongly reduced by functionally coupled substitutions for amino acid residues 534 (P4 position of the cleavage site between nsP1 and nsP2) and 1052 (S4 subsite residue of nsP2 protease) in the nonstructural polyprotein. Pulse-chase experiments revealed that A774wt and avirulent recombinant virus were characterized by increased processing speed of the cleavage site between nsP1 and nsP2. A His534-to-Arg substitution specifically activated this cleavage, while a Val1052-to-Glu substitution compensated for this effect by reducing the basal protease activity of nsP2. These findings provide a link between nonstructural polyprotein processing and the virulence of SFV. IMPORTANCE: SFV infection of mice provides a well-characterized model to study viral encephalitis. SFV also serves as a model for studies of alphavirus molecular biology and host-pathogen interactions. Thus far, the genetic basis of different properties of SFV strains has been studied using molecular clones, which often contain mistakes originating from standard cDNA synthesis and cloning procedures. Here, for the first time, consensus clones of SFV strains were used to map virulence determinants. Existing data on the importance of nsP3 for virulent phenotypes were confirmed, another determinant of neurovirulence and its molecular basis was characterized, and a novel function of nsP3 was identified. These findings provide links between the molecular biology of SFV and its biological properties and significantly increase our understanding of the basis of alphavirus-induced pathology. In addition, the usefulness of consensus clones as tools for studies of alphaviruses was demonstrated.


Assuntos
Neurônios/virologia , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/metabolismo , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/patogenicidade , Proteínas não Estruturais Virais/genética , Substituição de Aminoácidos/genética , Animais , Linhagem Celular , DNA Complementar/biossíntese , Immunoblotting , Camundongos , Microscopia de Fluorescência , Processamento de Proteína Pós-Traducional/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus da Floresta de Semliki/metabolismo , Estatísticas não Paramétricas , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...