Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (208)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39007613

RESUMO

Transcranial ultrasound stimulation (TUS) is an emerging non-invasive neuromodulation technique capable of manipulating both cortical and subcortical structures with high precision. Conducting experiments involving humans necessitates careful planning of acoustic and thermal simulations. This planning is essential to adjust for bone interference with the ultrasound beam's shape and trajectory and to ensure TUS parameters meet safety requirements. T1- and T2-weighted, along with zero-time echo (ZTE) magnetic resonance imaging (MRI) scans with 1 mm isotropic resolution, are acquired (alternatively computed tomography x-ray (CT) scans) for skull reconstruction and simulations. Target and trajectory mapping are performed using a neuronavigational platform. SimNIBS is used for the initial segmentation of the skull, skin, and brain tissues. Simulation of TUS is carried over with the BabelBrain tool, which uses the ZTE scan to produce synthetic CT images of the skull to be converted into acoustic properties. We use a phased array ultrasound transducer with electrical steering capabilities. Z-steering is adjusted to ensure that the target depth is reached. Other transducer configurations are also supported in the planning tool. Thermal simulations are run to ensure temperature and mechanical index requirements are within the acoustic guidelines for TUS in human subjects as recommended by the FDA. During TUS delivery sessions, a mechanical arm assists in the movement of the transducer to the required location using a frameless stereotactic localization system.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
2.
J Neurosurg ; : 1-8, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38626471

RESUMO

Magnetic resonance-guided focused ultrasound (MRgFUS) is one of the newest surgical treatments for essential tremor (ET). During this procedure, a lesion is created within the thalamus to mitigate tremor. Targeting is done using a combination of stereotaxy, MR tractography, and sublesional heating, with tremor assessed during the procedure to gauge therapeutic effectiveness. Currently, tremor assessments are done qualitatively, but this approach requires the tremor change to be above a subjective threshold and provides no objective record of surgical tremor progression. Here, the authors present and demonstrate an MR-compatible accelerometer with custom MATLAB analysis code and graphical user interface to record, visualize, and quantify tremor in near real-time. Results can be exported and saved for future review. This method was used in 20 surgeries, with patients experiencing a 50.7% (95% CI -64.1% to -37.3%) improvement in the treated limb per the Clinical Rating Scale for Tremor. This method does not interrupt the surgery and is quantitative. As research on optimizing MRgFUS treatment for ET continues-for example, the refinement of targeting during sublesional sonications-such quantifying and recording of tremor changes will provide rapid and objective feedback.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA