Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(25): 36577-36590, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760600

RESUMO

The placing of plant protection products (PPPs) on the market in the European Union is governed by numerous regulations. These regulations are among the most stringent in the world, however they have been the subject of criticisms especially because of the decline in biodiversity. The objectives of this work were to review (1) the functioning and actors involved in the PPP framework processes, (2) the construction of the environmental risk assessment focused on biodiversity, and (3) the suggested ways to respond to the identified limits. Both literature from social sciences and ecotoxicology were examined. Despite the protective nature of the European regulation on PPPs, the very imperfect consideration of biodiversity in the evaluation process was underlined. The main limits are the multiplicity of applicable rules, the routinization of the evaluation procedures, the lack of consideration of social data, and the lack of independence of the evaluation. Strengths of the regulation are the decision to integrate a systemic approach in the evaluation of PPPs, the development of modeling tools, and the phytopharmacovigilance systems. The avenues for improvement concern the realism of the risk assessment (species used, cocktail effects…), a greater transparency and independence in the conduct of evaluations, and the opening of the evaluation and decision-making processes to actors such as beekeepers or NGOs. Truly interdisciplinary reflections crossing the functioning of the living world, its alteration by PPPs, and how these elements question the users of PPPs would allow to specify social actions, public policies, and their regulation to better protect biodiversity.


Assuntos
Biodiversidade , Medição de Risco , União Europeia , Conservação dos Recursos Naturais , Plantas
2.
Artigo em Inglês | MEDLINE | ID: mdl-38630402

RESUMO

Biocontrol solutions (macroorganisms, microorganisms, natural substances, semiochemicals) are presented as potential alternatives to conventional plant protection products (PPPs) because they are supposed to have lower impacts on ecosystems and human health. However, to ensure the sustainability of biocontrol solutions, it is necessary to document the unintended effects of their use. Thus, the objectives of this work were to review (1) the available biocontrol solutions and their regulation, (2) the contamination of the environment (soil, water, air) by biocontrol solutions, (3) the fate of biocontrol solutions in the environment, (4) their ecotoxicological impacts on biodiversity, and (5) the impacts of biocontrol solutions compared to those of conventional PPPs. Very few studies concern the presence of biocontrol solutions in the environment, their fate, and their impacts on biodiversity. The most important number of results were found for the organisms that have been used the longest, and most often from the angle of their interactions with other biocontrol agents. However, the use of living organisms (microorganisms and macroorganisms) in biocontrol brings a specific dimension compared to conventional PPPs because they can survive, multiply, move, and colonize other environments. The questioning of regulation stems from this specific dimension of the use of living organisms. Concerning natural substances, the few existing results indicate that while most of them have low ecotoxicity, others have a toxicity equivalent to or greater than that of the conventional PPPs. There are almost no result regarding semiochemicals. Knowledge of the unintended effects of biocontrol solutions has proved to be very incomplete. Research remains necessary to ensure their sustainability.

3.
Viruses ; 16(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38543758

RESUMO

Botryosphaeriaceae are fungi involved in the decay of various woody species, including the grapevine, leading to significant production losses. This fungal family is largely ubiquitous, and seven species of Botryosphaeriaceae have been identified in French vineyards, with variable levels of aggressiveness, both in vitro and in planta. Mycoviruses can impact the life traits of their fungal hosts, including aggressiveness, and are one of the factors influencing fungal pathogenicity. In this study, the RNA mycovirome of fifteen Botryosphaeriaceae isolates was characterized through the high-throughput sequencing of double-stranded RNA preparations from the respective samples. Eight mycoviruses were detected, including three potential novel species in the Narnaviridae family, as well as in the proposed Mycobunyaviridae and Fusagraviridae families. A large collection of Botryosphaeriaceae isolates was screened using RT-PCR assays specific for 20 Botryosphaeriaceae-infecting mycoviruses. Among the mycoviruses detected, some appeared to be specialists within a single host species, while others infected isolates belonging to multiple Botryosphaeriaceae species. This screening allowed us to conclude that one-third of the Botryosphaeriaceae isolates were infected by at least one mycovirus, and a significant proportion of isolates (43.5%) were found to be coinfected by several viruses, with very complex RNA mycoviromes for some N. parvum isolates.


Assuntos
Ascomicetos , Micovírus , Vírus de RNA , Humanos , Micovírus/genética , Doenças das Plantas/microbiologia , Filogenia , Vírus de RNA/genética , RNA de Cadeia Dupla/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-37099095

RESUMO

Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020-2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA's main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.

5.
Sci Total Environ ; 844: 157003, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35772548

RESUMO

Before their placing on the market, the safety of plant protection products (PPP) towards both human and animal health, and the environment has to be assessed using experimental and modelling approaches. Models are crucial tools for PPP risk assessment and some even help to avoid animal testing. This review investigated the use of modelling approaches in the ecotoxicology section of PPP active substance assessment reports prepared by the authorities and opened to consultation from 2011 to 2021 in the European Union. Seven categories of models (Structure-Activity, ToxicoKinetic, ToxicoKinetic-ToxicoDynamic, Species Sensitivity Distribution, population, community, and mixture) were searched for into the reports of 317 active substances. At least one model category was found for 44 % of the investigated active substances. The most detected models were Species Sensitivity Distribution, Structure-Activity and ToxicoKinetic for 27, 21 and 15 % of the active substances, respectively. The use of modelling was of particular importance for conventional active substances such as sulfonylurea or carbamates contrary to microorganisms and plant derived substances. This review also highlighted a strong imbalance in model usage among the biological groups considered in the European Regulation (EC) No 1107/2009. For example, models were more often used for aquatic than for terrestrial organisms (e.g., birds, mammals). Finally, a gap between the set of models used in reports and those existing in the literature was observed highlighting the need for the implementation of more sophisticated models into PPP regulation.


Assuntos
Ecotoxicologia , Magnoliopsida , Animais , União Europeia , Humanos , Mamíferos , Plantas , Medição de Risco
6.
Viruses ; 13(3)2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673510

RESUMO

Neofusicoccum parvum is a fungal plant-pathogen belonging to the family Botryosphaeriaceae, and is considered one of the most aggressive causal agents of the grapevine trunk disease (GTD) Botryosphaeria dieback. In this study, the mycovirome of a single strain of N. parvum (COLB) was characterized by high throughput sequencing analysis of total RNA and subsequent bioinformatic analyses. Contig annotations, genome completions, and phylogenetic analyses allowed us to describe six novel mycoviruses belonging to four different viral families. The virome is composed of two victoriviruses in the family Totiviridae, one alphaendornavirus in the family Endornaviridae, two mitoviruses in the family Mitoviridae, and one narnavirus belonging to the family Narnaviridae. The presence of the co-infecting viruses was confirmed by sequencing the RT-PCR products generated from total nucleic acids extracted from COLB. This study shows that the mycovirome of a single N. parvum strain is highly diverse and distinct from that previously described in N. parvum strains isolated from grapevines.


Assuntos
Ascomicetos/genética , Ascomicetos/virologia , Micovírus/genética , Ácidos Nucleicos/genética , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Vírus de RNA/genética , Vitis/microbiologia , Vitis/virologia
7.
J Agric Food Chem ; 69(6): 1781-1795, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33529021

RESUMO

Three recognized plant defense stimulators (PDS), methyl jasmonate (MeJA), benzothiadiazole (BTH) and phosphonates (PHOS), were sprayed on grapevine Vitis vinifera cuttings and conferred resistance to the biotrophic pathogen Plasmopara viticola. The effects on molecular defense-related genes and polyphenol content (stilbenes and flavanols) were revealed at 6 and 8 days post-elicitation. The transcript accumulation was consistent with the signaling pathway specific to the elicitor, salicylic acid for BTH, and jasmonic acid for MeJA, with some cross-talks. PHOS tended to modulate the defense responses like BTH. Moreover, in response to a downy mildew inoculation, the leaves pre-treated with PHOS and BTH overproduced pterostilbene, and after MeJA treatment, piceids and ε-viniferin, compared to uninoculated elicitor-treated leaves. These results provide evidence of the different modes of action of PDS and their role in sustainable viticulture.


Assuntos
Oomicetos , Vitis , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas
8.
J Agric Food Chem ; 68(51): 15085-15096, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33315399

RESUMO

The increasing use of plant defense stimulators (PDS) and biostimulants (BS) to make agriculture more sustainable has led to questions about their action on plants. A new PhysBioGen approach is proposed with complementary tools: PHYSiological (root weight); BIOchemical and BIOlogical (secondary metabolite quantification and Plasmopara viticola development) and expressions of 161 GENes involved in metabolic plant functions. The proposed approach investigated the effects of three phytostimulants on Vitis vinifera: one PDS (ASM) and one BS chelated (CH) and another enriched with seaweed (SW). Distinct responses were obtained between the PDS and the two BS. In particular, we observed the persistence of anti-mildew efficacy over time, correlated with differentiated expressions of defense genes (VvROMT, VvSAMT, VvPR8). As expected, the two BS displayed more similarities to each other than to the PDS (flavonols, anthocyanins, free salicylic acid). However, the two BS revealed differences in the modulation of genes involved in defense and primary metabolism and some genes were identified as potential markers of their action (VvWRKY1, VvLOX9, VvPOD, VvPDV1, VvXIP1, VVDnaJ). Our results highlight the common and the specific effects of the two BS and the PDS. These new tools could help in understanding the mode of action of phytostimulants in order to achieve better quality and production yield and/or as a way to limit chemical inputs in the vineyard.


Assuntos
Extratos Vegetais/farmacologia , Tiadiazóis/farmacologia , Vitis/efeitos dos fármacos , Vitis/imunologia , Resistência à Doença , Oomicetos/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Alga Marinha/química , Vitis/genética , Vitis/microbiologia
9.
Metabolomics ; 15(5): 67, 2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31030265

RESUMO

INTRODUCTION: Grapevine protection is an important issue in viticulture. To reduce pesticide use, sustainable disease control strategies are proposed, including a promising alternative method based on the elicitor-triggered stimulation of the grapevine natural defense responses. However, detailed investigations are necessary to characterize the impact of such defense induction on the primary metabolism. OBJECTIVES: Our aim was to use a metabolomics approach to assess the impact on grapevine of different elicitors dependent on the salicylic acid (SA) and/or jasmonic acid (JA) pathway. For this purpose, leaves of grapevine foliar cuttings were treated with methyl jasmonate, acibenzolar-S-methyl or phosphonates. METHODS: According to the elicitor, common and discriminating metabolites were elucidated using 1H NMR measurements and principal component analysis. RESULTS: A wide range of compounds including carbohydrates, amino acids, organic acids, phenolics and amines were identified. The score plots obtained by combining PC1 versus PC2 and PC1 versus PC3 allowed a clear separation of samples, so metabolite fingerprinting showed an extensive reprogramming of primary metabolic pathways after elicitation. CONCLUSION: The methods applied were found to be accurate for the rapid determination and differential characterization of plant samples based on their metabolic composition. These investigations can be very useful because the application of plant defense stimulators is gaining greater importance as an alternative strategy to pesticides in the vineyard.


Assuntos
Metabolômica , Folhas de Planta/metabolismo , Vitis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/química , Análise de Componente Principal , Espectroscopia de Prótons por Ressonância Magnética , Ácido Salicílico/metabolismo , Vitis/química
10.
J Agric Food Chem ; 66(13): 3338-3350, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29557656

RESUMO

Grapevine is subject to diseases that affect yield and wine quality caused by various pathogens including Botrytis cinerea. To limit the use of fungicides, an alternative is to use plant elicitors such as benzothiadiazole (BTH). We investigated the effect of a fungicide (Pyrimethanil) and an elicitor (benzothiadiazole) on plant defenses. Applications for two consecutive years in the vineyard significantly reduced gray mold. Two and seven days after treatments, the expressions of 48 genes involved in defenses showed differential modulation (up- or down-regulation) depending on treatment. Some genes were identified as potential markers of protection and were linked to an increase in total polyphenols (TP) in leaves. Surprisingly, the fungicide also induced the expression of defense genes and increased the polyphenol content. This suggests that BTH acts as an efficient elicitor in the vineyard and that Pyrimethanil may act, in part, as a defense-inducing agent on the vine.


Assuntos
Botrytis/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Pirimidinas/farmacologia , Tiadiazóis/farmacologia , Vitis/microbiologia , Botrytis/fisiologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Vitis/genética , Vitis/imunologia
11.
Arch Virol ; 163(2): 559-562, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29075886

RESUMO

Double-stranded RNAs from an isolate of Neofusicoccum luteum collected from grapevines were analyzed by high-throughput sequencing. Contig annotations revealed the presence of a potential novel virus belonging to the newly proposed family Fusariviridae. Completion of the viral genome sequence was performed. The genome is 6,244 nucleotide long, excluding the poly(A) tail and contains two putative open reading frames (ORFs). The first one encodes a large polypeptide of 1,552 amino acids (aa) with conserved RNA-dependent RNA polymerase and helicase domains typical of viral replicases. The second ORF encodes a putative 475-aa-long polypeptide showing weak homology to the corresponding ORF of Macrophomina phaseolina single-stranded RNA virus 1, for which no function is known so far. Phylogenetic analyses indicated that this virus should be considered a novel mycovirus belonging to the proposed family Fusariviridae, for which the name "Neofusicoccum luteum fusarivirus 1" (NlFV1) is proposed.


Assuntos
Ascomicetos/virologia , Micovírus/isolamento & purificação , Vírus de RNA/isolamento & purificação , Vitis/microbiologia , Ascomicetos/fisiologia , Micovírus/classificação , Micovírus/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/microbiologia , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Viral/genética
12.
J Agric Food Chem ; 65(40): 8884-8891, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28925259

RESUMO

Pine knot extract from Pinus pinaster byproducts was characterized by UHPLC-DAD-MS and NMR. Fourteen polyphenols divided into four classes were identified as follows: lignans (nortrachelogenin, pinoresinol, matairesinol, isolariciresinol, secoisolariciresinol), flavonoids (pinocembrin, pinobanksin, dihydrokaempferol, taxifolin), stilbenes (pinosylvin, pinosylvin monomethyl ether, pterostilbene), and phenolic acids (caffeic acid, ferulic acid). The antifungal potential of pine knot extract, as well as the main compounds, was tested in vitro against Plasmopara viticola. The ethanolic extract showed a strong antimildew activity. In addition, pinosylvins and pinocembrin demonstrated significant inhibition of zoospore mobility and mildew development. These findings strongly suggest that pine knot is a potential biomass that could be used as a natural antifungal product.


Assuntos
Antifúngicos/farmacologia , Oomicetos/efeitos dos fármacos , Pinus/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Polifenóis/química , Polifenóis/isolamento & purificação
13.
Arch Virol ; 162(8): 2477-2480, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28451899

RESUMO

Neofusicoccum luteum species belongs to the Botryosphaeriaceae family and is involved in grapevine wood decay diseases. The present study reports the discovery and the molecular characterization of a novel mitovirus infecting this fungus. Double-stranded RNAs were purified from cultivated N. luteum and analysed by next generation sequencing. Using contigs showing BlastX homology with the RNA-dependent RNA polymerase (RdRp) gene of various members of the family Narnaviridae, a single contig of approximately 1.2 kb was constructed. The genomic sequence was completed and phylogenetic analyses indicated that this virus represents a new member of the genus Mitovirus, for which the name of "Neofusicoccum luteum mitovirus 1" is proposed. The genome is 2,389 nucleotides long and, based on the fungal mitochondrial genetic code, it encodes a putative protein of 710 amino acids, homologous to the RdRps of members of the Narnaviridae family. The neofusicoccum luteus mitovirus 1 (NLMV1) RdRp contains the six conserved motifs previously reported for mitoviral RdRps. Our findings represent the first evidence that a mycovirus can infect N. luteum, an important pathogenic fungus of grapevine.


Assuntos
Ascomicetos/virologia , Micovírus/genética , Genoma Viral , Vírus de RNA/genética , RNA Viral/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Micovírus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/microbiologia , Vírus de RNA/isolamento & purificação , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/isolamento & purificação , RNA Viral/isolamento & purificação , RNA Polimerase Dependente de RNA/genética , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética
14.
J Agric Food Chem ; 65(13): 2711-2718, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28288509

RESUMO

Stilbene-enriched extracts from Vitis vinifera waste (cane, wood, and root) were characterized by UHPLC-MS. Eleven stilbenes were identified and quantified as follows: ampelopsin A, (E)-piceatannol, pallidol, (E)-resveratrol, hopeaphenol, isohopeaphenol, (E)-ε-viniferin, (E)-miyabenol C, (E)-ω-viniferin, r2-viniferin, and r-viniferin. The fungicide concentration inhibiting 50% of growth of Plasmopara viticola sporulation (IC50) was determined for the extracts and also for the main compounds isolated. r-Viniferin followed by hopeaphenol and r2-viniferin showed low IC50 and thus high efficacy against Plasmopara viticola. Regarding stilbene extracts, wood extract followed by root extract showed the highest antifungal activities. These data suggest that stilbene complex mixtures from Vitis vinifera waste could be used as a cheap source of bioactive stilbenes for the development of natural fungicides.


Assuntos
Fungicidas Industriais/farmacologia , Oomicetos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Estilbenos/farmacologia , Vitis/química , Resíduos/análise , Fungicidas Industriais/química , Fungicidas Industriais/isolamento & purificação , Estrutura Molecular , Oomicetos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/microbiologia , Estilbenos/química , Estilbenos/isolamento & purificação
15.
Plant Dis ; 101(8): 1470-1480, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30678588

RESUMO

Trunk diseases are factors that limit sustainability of vineyards worldwide. Botryosphaeria and Eutypa diebacks are caused by several fungi belonging to the Botryosphaeriaceae and Diatrypaceae, respectively, with Diplodia seriata and Eutypa lata being two of the most common species. Previous information indicated that the traditional isolation method used to detect these pathogens from plant samples could underestimate their incidence levels. In the present study, we designed two sets of primers that target the ß-tubulin gene and that are amenable for quantitative real-time PCR (qPCR) Sybr-Green assays for the detection and quantification of D. seriata-complex (DseCQF/R) and E. lata (ElQF/R) DNA. The design of a species-specific assay was achieved for E. lata. For D. seriata, a species-specific assay could not be designed. The low interspecific diversity across ß-tubulin genes resulted in an assay that could not discriminate D. seriata from some closely related species either not yet reported or presenting a low prevalence on grapevine, such as D. intermedia. We validated our technique on grapevine spur samples naturally and artificially infected with D. seriata and E. lata during the dormant season. Experimental grapevines were located in two counties of northern California where the incidence of both pathogens was previously reported. The qPCR assays revealed that a high frequency of pruning wound infections (65%) was achieved naturally by E. lata, while low infection frequency (less than 5%) was observed using the reisolation method. For D. seriata-complex, low (5%) to no natural infection frequencies were observed by the qPCR and the reisolation method, respectively. These results also provided evidence that our qPCR detection methods were more sensitive to assess the incidence of E. lata and D. seriata-complex in plant samples, than traditional isolation techniques. Benefits of molecular methods for the detection of canker pathogens in the field under natural conditions are discussed.


Assuntos
Agricultura , Ascomicetos , Vitis , Agricultura/métodos , Ascomicetos/genética , California , DNA Fúngico/genética , Doenças das Plantas/microbiologia , Vitis/microbiologia
16.
BMC Genomics ; 17(1): 957, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27875995

RESUMO

BACKGROUND: The fight against grapevine diseases due to biotrophic pathogens usually requires the massive use of chemical fungicides with harmful environmental effects. An alternative strategy could be the use of compounds able to stimulate plant immune responses which significantly limit the development of pathogens in laboratory conditions. However, the efficiency of this strategy in natura is still insufficient to be included in pest management programs. To understand and to improve the mode of action of plant defense stimulators in the field, it is essential to develop reliable tools that describe the resistance status of the plant upon treatment. RESULTS: We have developed a pioneering tool ("NeoViGen96" chip) based on a microfluidic dynamic array platform allowing the expression profiling of 85 defense-related grapevine genes in 90 cDNA preparations in a 4 h single run. Two defense inducers, benzothiadiazole (BTH) and fosetyl-aluminum (FOS), have been tested in natura using the "NeoViGen96" chip as well as their efficacy against downy mildew. BTH-induced grapevine resistance is accompanied by the induction of PR protein genes (PR1, PR2 and PR3), genes coding key enzymes in the phenylpropanoid pathway (PAL and STS), a GST gene coding an enzyme involved in the redox status and an ACC gene involved in the ethylene pathway. FOS, a phosphonate known to possess a toxic activity against pathogens and an inducing effect on defense genes provided a better grapevine protection than BTH. Its mode of action was probably strictly due to its fungicide effect at high concentrations because treatment did not induce significant change in the expression level of selected defense-related genes. CONCLUSIONS: The NeoViGen96" chip assesses the effectiveness of plant defense inducers on grapevine in vineyard with an excellent reproducibility. A single run with this system (4 h and 1,500 €), corresponds to 180 qPCR plates with conventional Q-PCR assays (Stragene system, 270 h and 9,000 €) thus a throughput 60-70 times higher and 6 times cheaper. Grapevine responses after BTH elicitation in the vineyard were similar to those obtained in laboratory conditions, whereas our results suggest that the protective effect of FOS against downy mildew in the vineyard was only due to its fungicide activity since no activity on plant defense genes was observed. This tool provides better understanding of how the grapevine replies to elicitation in its natural environment and how the elicitor potential can be used to reduce chemical fungicide inputs.


Assuntos
Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dispositivos Lab-On-A-Chip , Vitis/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Tiadiazóis/farmacologia , Transcriptoma , Vitis/efeitos dos fármacos , Vitis/microbiologia
17.
Microbiol Res ; 192: 172-184, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27664735

RESUMO

The antagonistic activity of 46 bacterial strains isolated from Bordeaux vineyards were evaluated against Phaeomoniella chlamydospora, a major grapevine pathogen involved in Esca. The reduction of the necrosis length of stem cuttings ranged between 31.4% and 38.7% for the 8 most efficient strains. Two in planta trials allowed the selection of the two best strains, Bacillus pumilus (S32) and Paenibacillus sp. (S19). Their efficacy was not dependent on application method; co-inoculation, prevention in the wood and soil inoculation were tested. The involvement of antibiosis by the secretion of diffusible and/or volatile compounds in the antagonistic capacity of these two strains was assessed in vitro. Volatile compounds secreted by B. pumilus (S32) and Paenibacillus sp. (S19) were identified by gas chromatography/mass spectroscopy (GC/MS). The volatile compounds 1-octen-3-ol and 2,5-dimethyl pyrazine were obtained commercially and tested, and they showed strong antifungal activity against P. chlamydospora, which suggested that these compounds may play an important role in the bacterial antagonistic activity in planta. Furthermore, the expression of 10 major grapevine defense genes was quantified by real-time polymerase chain reaction, which demonstrated that the two strains significantly affected the grapevine transcripts four days after their application on the plants. High expression levels of different genes associated with P. chlamydospora infection in B. pumilus pre-treated plants suggests that this strain induces systemic resistance in grapevine. For the first time, we demonstrated the ability of two bacterial strains, B. pumilus and Paenibacillus sp., isolated from grapevine wood, to control P. chlamydospora via direct and/or indirect mechanisms.


Assuntos
Antibiose , Ascomicetos/fisiologia , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Doenças das Plantas/microbiologia , Vitis/microbiologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Fenótipo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
18.
PLoS One ; 8(1): e54185, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342101

RESUMO

Most WRKY transcription factors activate expression of defence genes in a salicylic acid- and/or jasmonic acid-dependent signalling pathway. We previously identified a WRKY gene, VvWRKY1, which is able to enhance tolerance to fungal pathogens when it is overexpressed in tobacco. The present work analyzes the effects of VvWRKY1 overexpression in grapevine. Microarray analysis showed that genes encoding defence-related proteins were up-regulated in the leaves of transgenic 35S::VvWRKY1 grapevines. Quantitative RT-PCR analysis confirmed that three genes putatively involved in jasmonic acid signalling pathway were overexpressed in the transgenic grapes. The ability of VvWRKY1 to trans-activate the promoters of these genes was demonstrated by transient expression in grape protoplasts. The resistance to the causal agent of downy mildew, Plasmopara viticola, was enhanced in the transgenic plants. These results show that VvWRKY1 can increase resistance of grapevine against the downy mildew through transcriptional reprogramming leading to activation of the jasmonic acid signalling pathway.


Assuntos
Ciclopentanos/metabolismo , Oomicetos/patogenicidade , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Vitis/metabolismo , Vitis/microbiologia , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Vitis/genética
19.
J Agric Food Chem ; 60(48): 11859-68, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23145924

RESUMO

The interaction between Vitis vinifera and trunk disease fungi requires better understanding. We studied the role of phenolics as possible plant defense compounds in this context. The impact of 24 grapevine phenolic compounds was determined on 6 major wood decay fungi by an in vitro agar plate assay. Hydroxystilbenoids, especially oligomers such as miyabenol C, isohopeaphenol, and vitisin A and B, greatly reduced the growth of the fungi, except that of Phaeoacremonium aleophilum . A detailed investigation in 10 Botryosphaeriaceae strains revealed that all of the studied members of this family display a common susceptibility to phenolics that is more or less significant. Then we undertook a quantitative analysis of stilbenoid content in grapevine plantlets inoculated with Botryosphaeriaceae to investigate whether in planta these fungi have to counteract the most active phenolics. On the basis of our results, the possible role of phenolics in grapevine defense against trunk disease agents is discussed.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Fenóis/farmacologia , Doenças das Plantas/microbiologia , Caules de Planta/microbiologia , Vitis/microbiologia , Benzofuranos/farmacologia , Interações Hospedeiro-Patógeno/fisiologia , Concentração Inibidora 50 , Estilbenos/análise , Estilbenos/metabolismo , Estilbenos/farmacologia , Vinho , Madeira/microbiologia
20.
Pest Manag Sci ; 67(1): 60-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20949585

RESUMO

BACKGROUND: Management of grapevine powdery mildew Erysiphe necator Schw. requires fungicide treatments such as sterol demethylation inhibitors (DMIs) or mitochondrial inhibitors (QoIs). Recently, reduction in the efficacy of DMIs or QoIs was reported in Europe and the United States. The aim of the present study was to develop real-time qPCR tools to detect and quantify several CYP51 gene variants of E. necator: (i) A versus B groups (G37A) and (ii) sensitive versus resistant to sterol demethylase inhibitor fungicides (Y136F). RESULTS: The efficacy of the qPCR tools developed was better than the CAPS method, with a limit of 2 pg for E necator DNA, 0.06 ng for genetic group A and 1.4 ng for the DMI-resistant allele. The detection limits of qPCR protocols (LOD) ranged from 0.72 to 0.85%, and the quantification limits (LOQ) ranged from 2.4 to 2.85% for the two alleles G47A and Y136F respectively. The application of qPCR to field isolates from French vineyards showed the presence of DMI-resistant and/or QoI-resistant alleles in French pathogen populations, linked to genetic group B. CONCLUSION: The real-time PCR assay developed in this study provides a potentially useful tool for efficient quantification of different alleles of interest for fungicide monitoring and for population structure of E. necator.


Assuntos
Ascomicetos/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Vitis/microbiologia , Alelos , Ascomicetos/genética , Escore Lod , Controle de Pragas , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...