Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(23): 15960-15976, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37992274

RESUMO

The identification of clinical candidate LY3522348 (compound 23) is described. LY3522348 is a highly selective, oral dual inhibitor of human ketohexokinase isoforms C and A (hKHK-C, hKHK-A). Optimization began with highly efficient (S)-2-(2-methylazetidin-1-yl)-6-(1H-pyrazol-4-yl)-4-(trifluoromethyl)nicotinonitrile (3). Efforts focused on developing absorption, distribution, metabolism, potency, and in vitro safety profiles to support oral QD dosing in patients. Structure-based design leveraged vectors for substitution of the pyrazole ring, which provided an opportunity to interact with several different proximal amino acid residues in the protein. LY3522348 displayed a robust pharmacodynamic response in a mouse model of fructose metabolism and was advanced into clinical trials.


Assuntos
Frutoquinases , Camundongos , Animais , Humanos
2.
Int Wound J ; 19(2): 370-379, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34240793

RESUMO

Optimal treatment of full-thickness skin injuries requires dermal and epidermal replacement. To spare donor dermis, dermal substitutes can be used ahead of split-thickness skin graft (STSG) application. However, this two-stage procedure requires an additional general anaesthetic, often prolongs hospitalisation, and increases outpatient services. Although a few case series have described successful single-stage reconstructions, with application of both STSG and dermal substitute at the index operation, we have little understanding of how the physical characteristics of dermal substitutes affects the success of a single-stage procedure. Here, we evaluated several dermal substitutes to optimise single-stage skin replacement in a preclinical porcine model. A porcine full-thickness excisional wound model was used to evaluate the following dermal substitutes: autologous dermal graft (ADG; thicknesses 0.15-0.60 mm), Integra (0.4-0.8 mm), Alloderm (0.9-1.6 mm), and chitosan-based hydrogel (0.1-0.2 mm). After excision, each wound was treated with either a dermal substitute followed by STSG or STSG alone (control). Endpoints included graft take at postoperative days (PODs) 7 and 14, wound closure at POD 28, and wound contracture from POD 28-120. Graft take was highest in the STSG alone and hydrogel groups at POD 14 (86.9% ± 19.5% and 81.3% ± 12.3%, respectively; P < .001). There were no differences in graft take at POD 7 or in wound closure at POD 28, though highest rates of wound closure were seen in the STSG alone and hydrogel groups (93.6% ± 9.1% and 99.8% ± 0.5%, respectively). ADG-treated wounds demonstrated the least amount of wound contracture at each time point. Increase dermal substitute thickness was associated with worse percent graft take at PODs 14 and 28 (Spearman ρ of -0.50 and -0.45, respectively; P < .001). In this preclinical single-stage skin reconstruction model, thinner ADG and hydrogel dermal substitutes outperformed thicker dermal substitutes. Both substitute thickness and composition affect treatment success. Further preclinical and clinical studies to optimise this treatment modality are warranted.


Assuntos
Transplante de Pele , Pele Artificial , Animais , Sobrevivência de Enxerto , Pele , Suínos , Cicatrização
3.
J Med Chem ; 64(6): 3439-3448, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33721487

RESUMO

The identification of LSN3318839, a positive allosteric modulator of the glucagon-like peptide-1 receptor (GLP-1R), is described. LSN3318839 increases the potency and efficacy of the weak metabolite GLP-1(9-36)NH2 to become a full agonist at the GLP-1R and modestly potentiates the activity of the highly potent full-length ligand, GLP-1(7-36)NH2. LSN3318839 preferentially enhances G protein-coupled signaling by the GLP-1R over ß-arrestin recruitment. Ex vivo experiments show that the combination of GLP-1(9-36)NH2 and LSN3318839 produces glucose-dependent insulin secretion similar to that of GLP-1(7-36)NH2. Under nutrient-stimulated conditions that release GLP-1, LSN3318839 demonstrates robust glucose lowering in animal models alone or in treatment combination with sitagliptin. From a therapeutic perspective, the biological properties of LSN3318839 support the concept that GLP-1R potentiation is sufficient for reducing hyperglycemia.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Administração Oral , Animais , Glicemia/análise , Descoberta de Drogas , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Hipoglicemiantes/administração & dosagem , Camundongos , Modelos Moleculares , Ratos Sprague-Dawley
4.
Compr Physiol ; 8(1): 371-405, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29357133

RESUMO

Burn injuries are a pervasive clinical problem. Extensive thermal trauma can be life-threatening or result in long-lasting complications, generating a significant impact on quality of life for patients as well as a cost burden to the healthcare system. The importance of addressing global or systemic issues such as resuscitation and management of inhalation injuries is not disputed but is beyond the scope of this review, which focuses on cutaneous pathophysiologic mechanisms for current treatments, both in the acute and long-term settings. Pathophysiological mechanisms of burn progression and wound healing are mediated by highly complex cascades of cellular and biochemical events, which become dysregulated in slow-healing wounds such as burns. Burns can result in fibroproliferative scarring, skin contractures, or chronic wounds that take weeks or months to heal. Burn injuries are highly individualized owing to wound-specific differences such as burn depth and surface area, in addition to patient-specific factors including genetics, immune competency, and age. Other extrinsic complications such as microbial infection can complicate wound healing, resulting in prolonged inflammation and delayed re-epithelialization. Although mortality is decreasing with advancements in burn care, morbidity from postburn deformities continues to be a challenge. Optimizing specialized acute care and late burn outcome intervention on a patient-by-patient basis is critical for successful management of burn wounds and the associated pathological scar outcome. Understanding the fundamentals of integument physiology and the cellular processes involved in wound healing is essential for designing effective treatment strategies for burn wound care as well as development of future therapies. Published 2018. Compr Physiol 8:371-405, 2018.


Assuntos
Queimaduras/complicações , Queimaduras/terapia , Cicatriz/etiologia , Pele/lesões , Queimaduras/fisiopatologia , Cicatriz/terapia , Contratura/etiologia , Contratura/terapia , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Pele/fisiopatologia , Transplante de Pele/métodos , Cicatrização/fisiologia , Infecção dos Ferimentos/terapia
5.
Pediatr Crit Care Med ; 16(3): 245-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25581630

RESUMO

OBJECTIVES: The devastating effect of traumatic brain injury is exacerbated by an acute secondary neuroinflammatory response, clinically manifest as elevated intracranial pressure due to cerebral edema. The treatment effect of cell-based therapies in the acute post-traumatic brain injury period has not been clinically studied although preclinical data demonstrate that bone marrow-derived mononuclear cell infusion down-regulates the inflammatory response. Our study evaluates whether pediatric traumatic brain injury patients receiving IV autologous bone marrow-derived mononuclear cells within 48 hours of injury experienced a reduction in therapeutic intensity directed toward managing elevated intracranial pressure relative to matched controls. DESIGN: The study was a retrospective cohort design comparing pediatric patients in a phase I clinical trial treated with IV autologous bone marrow-derived mononuclear cells (n = 10) to a control group of age- and severity-matched children (n = 19). SETTING: The study setting was at Children's Memorial Hermann Hospital, an American College of Surgeons Level 1 Pediatric Trauma Center and teaching hospital for the University of Texas Health Science Center at Houston from 2000 to 2008. PATIENTS: Study patients were 5-14 years with postresuscitation Glasgow Coma Scale scores of 5-8. INTERVENTIONS: The treatment group received 6 million autologous bone marrow-derived mononuclear cells/kg body weight IV within 48 hours of injury. The control group was treated in an identical fashion, per standard of care, guided by our traumatic brain injury management protocol, derived from American Association of Neurological Surgeons guidelines. MEASUREMENTS AND MAIN RESULTS: The primary measure was the Pediatric Intensity Level of Therapy scale used to quantify treatment of elevated intracranial pressure. Secondary measures included the Pediatric Logistic Organ Dysfunction score and days of intracranial pressure monitoring as a surrogate for length of neurointensive care. A repeated-measure mixed model with marginal linear predictions identified a significant reduction in the Pediatric Intensity Level of Therapy score beginning at 24 hours posttreatment through week 1 (p < 0.05). This divergence was also reflected in the Pediatric Logistic Organ Dysfunction score following the first week. The duration of intracranial pressure monitoring was 8.2 ± 1.3 days in the treated group and 15.6 ± 3.5 days (p = 0.03) in the time-matched control group. CONCLUSIONS: IV autologous bone marrow-derived mononuclear cell therapy is associated with lower treatment intensity required to manage intracranial pressure, associated severity of organ injury, and duration of neurointensive care following severe traumatic brain injury. This may corroborate preclinical data that autologous bone marrow-derived mononuclear cell therapy attenuates the effects of inflammation in the early post-traumatic brain injury period.


Assuntos
Transplante de Medula Óssea/métodos , Lesões Encefálicas/terapia , Pressão Intracraniana , Monócitos/transplante , Transplante Autólogo/métodos , Índices de Gravidade do Trauma , Adolescente , Lesões Encefálicas/fisiopatologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Escala de Coma de Glasgow , Humanos , Infusões Intravenosas , Masculino , Monócitos/citologia , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...