Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 137: 108793, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146847

RESUMO

Marine environments receive plastic waste, where it suffers a transformation process into smaller particles. Among them, microplastics (MPs; <5 mm) are ingested by aquatic organisms leading to negative effects on animal welfare. The interactions between MPs, contaminants and organisms are poorly understood. To clarify this issue, European seabass (Dicentrarchus labrax L.) were fed with diets supplemented with 0 (control), polyethylene (PE) MPs (100 mg/kg diet), perfluorooctanesulfonic acid (PFOS, 4.83 µg/kg diet) or PFOS adsorbed to MPs (MPs-PFOS; final concentrations of 4.83 µg and 100 mg of PFOS and MP per kg of feed, respectively). Samples of skin mucus, serum, head-kidney (HK), liver, muscle, brain and intestine were obtained. PFOS levels were high in the liver of fish fed with the PFOS-diet, and markedly reduced when adsorbed to MPs. Compared to the control groups, liver EROD activity did not show any significant changes, whereas brain and muscle cholinesterase activities were decreased in all the groups. The histological and morphometrical study on liver and intestine showed significant alterations in fish fed with the experimental diets. At functional level, all the experimental diets affected the humoral (peroxidase, IgM, protease and bactericidal activities) as well as cellular (phagocytosis, respiratory burst and peroxidase) activities of HK leukocytes, being more marked those effects caused by the PFOS diet. Besides, treatments produced inflammation and oxidative stress as evidenced at gene level. Principal component analysis demonstrated that seabass fed with MPs-PFOS showed more similar effects to MPs alone than to PFOS. Overall, seabass fed with MPs-PFOS diet showed similar or lower toxicological alterations than those fed with MPs or PFOS alone demonstrating the lack of additive effects or even protection against PFOS toxicity.


Assuntos
Bass , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Polietileno , Plásticos , Bass/genética , Peroxidases , Poluentes Químicos da Água/toxicidade
2.
Environ Pollut ; 308: 119721, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809711

RESUMO

Microplastics (MPs), widely present in aquatic ecosystems, can be ingested by numerous organisms, but their toxicity remains poorly understood. Toxicity of environmental MPs from 2 beaches located on the Guadeloupe archipelago, Marie Galante (MG) and Petit-Bourg (PB) located near the North Atlantic gyre, was evaluated. A first experiment consisted in exposing early life stages of zebrafish (Danio rerio) to MPs at 1 or 10 mg/L. The exposure of early life stages to particles in water induced no toxic effects except a decrease in larval swimming activity for both MPs exposures (MG or PB). Then, a second experiment was performed as a chronic feeding exposure over 4 months, using a freshwater fish species, zebrafish, and a marine fish species, marine medaka (Oryzias melastigma). Fish were fed with food supplemented with environmentally relevant concentrations (1% wet weight of MPs in food) of environmental MPs from both sites. Chronic feeding exposure led to growth alterations in both species exposed to either MG or PB MPs but were more pronounced in marine medaka. Ethoxyresorufin-O-deethylase (EROD) and acetylcholinesterase (AChE) activities were only altered for marine medaka. Reproductive outputs were modified following PB exposure with a 70 and 42% decrease for zebrafish and marine medaka, respectively. Offspring of both species (F1 generation) were reared to evaluate toxicity following parental exposure on unexposed larvae. For zebrafish offspring, it revealed premature mortality after parental MG exposure and parental PB exposure produced behavioural disruptions with hyperactivity of F1 unexposed larvae. This was not observed in marine medaka offspring. This study highlights the ecotoxicological consequences of short and long-term exposures to environmental microplastics relevant to coastal marine areas, which represent essential habitats for a wide range of aquatic organisms.


Assuntos
Oryzias , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Ecossistema , Larva , Microplásticos , Plásticos/toxicidade , Reprodução , Natação , Poluentes Químicos da Água/análise , Peixe-Zebra
3.
Biomolecules ; 12(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35053226

RESUMO

This study investigated the ecotoxicological effects of differently sized (4-6 µm and 20-25 µm) low-density polyethylene (LDPE) microplastics (MPs), with and without adsorbed benzo-a-pyrene (BaP), in clam Scrobicularia plana. Biomarkers of oxidative stress (superoxide dismutase-SOD; catalase-CAT), biotransformation (glutathione-S-transferases-GST), oxidative damage (lipid peroxidation-LPO) and neurotoxicity (acetylcholinesterase-AChE) were analysed in gills and digestive glands at different time intervals for a total of 14 days of exposure. In order to have a better impact perspective of these contaminants, an integrated biomarker response index (IBR) and Health Index were applied. Biomarker alterations are apparently more related to smaller sized (4-6 µm) MPs in gills and to virgin LDPE MPs in the digestive gland according to IBR results, while the digestive gland was more affected by these MPs according to the health index.


Assuntos
Benzo(a)pireno/toxicidade , Bivalves/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais
4.
Environ Sci Pollut Res Int ; 29(3): 4497-4507, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34409531

RESUMO

The sorption processes of persistent organic pollutants on microplastics particles are poorly understood. Therefore, the present study investigated the sorption processes of perfluorooctanesulfonate (PFOS) on polyethylene (PE) microplastic particles (MPs) which are representing a prominent environmental pollutant and one of the most abundant microplastic polymers in the aquatic environment, respectively. The focus was set on the investigation of the impact of the particle size on PFOS sorption using four different PE MPs size ranges. The sorption kinetics for 6 months was studied with one selected size range of PE MPs. Besides, the desorption of PFOS from PE MPs under simulated digestive conditions was carried out by using artificial gut fluid mimicking the intestinal juice of fish. The investigation of the size effects of particles over 6 months demonstrated a linear increase of PFOS concentration sorbed onto PE with a decrease of the particle size. Thus, our findings implicate efficient sorption of PFOS onto PE MPs of different sizes. The results showed that PFOS desorbed from the PE MPs into the artificial gut fluid with a rate of 70 to 80%. Besides, a longer exposure of PE MPs to PFOS leads to a higher concentration adsorbed by PE MPs, which may favor the ingestion of higher concentration of PFOS, and thus represents a higher risk to transfer relevant concentrations of PFOS during digestion.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Ácidos Alcanossulfônicos , Animais , Fluorocarbonos , Cinética , Plásticos , Polietileno , Poluentes Químicos da Água/análise
5.
Toxics ; 9(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34437492

RESUMO

The aim of this study was to analyze the impact of three concentrations of a pesticide mixture on the first development stages of rainbow trout (Oncorhynchus mykiss). The mixture was made up of three commonly used pesticides in viticulture: glyphosate (GLY), chlorpyrifos (CPF) and copper sulfate (Cu). Eyed stage embryos were exposed for 3 weeks to three concentrations of the pesticide mixture. Lethal and sub-lethal effects were assessed through a number of phenotypic and molecular endpoints including survival, hatching delay, hatching success, biometry, swimming activity, DNA damage (Comet assay), lipid peroxidation (TBARS), protein carbonyl content and gene expression. Ten target genes involved in antioxidant defenses, DNA repair, mitochondrial metabolism and apoptosis were analyzed using real-time RT-qPCR. No significant increase of mortality, half-hatch, growth defects, TBARS and protein carbonyl contents were observed whatever the pesticide mixture concentration. In contrast, DNA damage and swimming activity were significantly more elevated at the highest pesticide mixture concentration. Gene transcription was up-regulated for genes involved in detoxification (gst and mt1), DNA repair (ogg1), mitochondrial metabolism (cox1 and 12S), and cholinergic system (ache). This study highlighted the induction of adaptive molecular and behavioral responses of rainbow trout larvae when exposed to environmentally realistic concentrations of a mixture of pesticides.

6.
Environ Toxicol Chem ; 40(11): 3092-3102, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34329515

RESUMO

Chlorpyrifos (CPF), an organophosphorous pesticide, can be found in aquatic ecosystems at concentrations of up to several hundred nanograms per liter because of water runoff from treated crops. While some studies have shown that low concentrations of CPF may have adverse effects on aquatic species, comparatively little is known about its effect on fish embryos and larvae. To investigate the developmental effects of CPF, rainbow trout (Oncorhynchus mykiss) eyed-stage embryos were exposed in semistatic conditions to 0.3 and 3 µg/L of CPF up to the end of the sac-fry stage, 3 weeks, at 12 °C. Several endpoints were analyzed including survival, hatching delay, hatching success, biometry, swimming activity, DNA damage, lipid peroxidation, protein carbonyl content, acetylcholinesterase (AChE) activity, and gene expression. At the end of the 3-week exposure, larvae exposed to the highest concentration of CPF were less mobile compared to the control and the lowest CPF conditions. No significant differences in AChE activity were observed in either set of CPF conditions compared to control, but it was significantly reduced for larvae exposed to 3 µg/L compared to those exposed to 0.3 µg/L of CPF. Expression of genes that encoded estrogen receptor beta was downregulated for larvae exposed to both CPF concentrations. Expression of cytochrome P450 family 19 subfamily A member 1 was also significantly repressed but only on larvae exposed to the highest concentration of CPF. Our results indicated that subchronic exposure to environmental concentrations of CPF could lead to sublethal effects on early-life stages of rainbow trout, especially effects on swimming activity that could affect foraging activity and escaping from predators. Environ Toxicol Chem 2021;40:3092-3102. © 2021 SETAC.


Assuntos
Clorpirifos , Oncorhynchus mykiss , Poluentes Químicos da Água , Acetilcolinesterase/metabolismo , Animais , Clorpirifos/toxicidade , Ecossistema , Larva , Oncorhynchus mykiss/metabolismo , Carbonilação Proteica , Natação , Poluentes Químicos da Água/toxicidade
7.
J Hazard Mater ; 415: 125626, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740727

RESUMO

Toxicity of polyethylene (PE) and polyvinyl chloride (PVC) microplastics (MPs), either virgin or spiked with chemicals, was evaluated in two short-lived fish using a freshwater species, zebrafish, and a marine species, marine medaka. Exposures were performed through diet using environmentally relevant concentrations of MPs over 4 months. No modification of classical biomarkers, lipid peroxidation, genotoxicity or F0 behaviour was observed. A significant decrease in growth was reported after at least two months of exposure. This decrease was similar between species, independent from the type of MPs polymer and the presence or not of spiked chemicals, but was much stronger in females. The reproduction was evaluated and it revealed a significant decrease in the reproductive output for both species and in far more serious numbers in medaka. PVC appeared more reprotoxic than PE as were MPs spiked with PFOS and benzophenone-3 compared to MPs spiked with benzo[a]pyrene. Further, PVC-benzophenone-3 produced behavioural disruption in offspring larvae. These results obtained with two species representing different aquatic environments suggest that microplastics exert toxic effects, slightly different according to polymers and the presence or not of sorbed chemicals, which may lead in all cases to serious ecological disruptions.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
8.
Ecotoxicol Environ Saf ; 208: 111665, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396175

RESUMO

Microplastics are ubiquitous in aquatic ecosystems, but little information is currently available on the dangers and risks to living organisms. In order to assess the ecotoxicity of environmental microplastics (MPs), samples were collected from the beaches of two islands in the Guadeloupe archipelago, Petit-Bourg (PB) located on the main island of Guadeloupe and Marie-Galante (MG) on the second island of the archipelago. These samples have a similar polymer composition with mainly polyethylene (PE) and polypropylene (PP). However, these two samples are very dissimilar with regard to their contamination profile and their toxicity. MPs from MG contain more lead, cadmium and organochlorine compounds while those from PB have higher levels of copper, zinc and hydrocarbons. The leachates of these two samples of MPs induced sublethal effects on the growth of sea urchins and on the pulsation frequency of jellyfish ephyrae but not on the development of zebrafish embryos. The toxic effects are much more marked for samples from the PB site than those from the MG site. This work demonstrates that MPs can contain high levels of potentially bioavailable toxic substances that may represent a significant ecotoxicological risk, particularly for the early life stages of aquatic animals.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/crescimento & desenvolvimento , Ecossistema , Ecotoxicologia , Ilhas , Microplásticos/química , Cifozoários/efeitos dos fármacos , Cifozoários/crescimento & desenvolvimento , Ouriços-do-Mar/efeitos dos fármacos , Ouriços-do-Mar/crescimento & desenvolvimento , Poluentes Químicos da Água/química
9.
Ecotoxicol Environ Saf ; 205: 111348, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979803

RESUMO

Transgenerational effects induced by environmental stressors are a threat to ecosystems and human health. However, there is still limited observation and understanding of the potential of chemicals to influence life outcomes over several generations. In the present study, we investigated the effects of two environmental contaminants, coumarin 47 and permethrin, on exposed zebrafish (F0) and their progeny (F1-F3). Coumarin 47 is commonly found in personal care products and dyes, whereas permethrin is used as a domestic and agricultural pyrethroid insecticide/insect repellent. Zebrafish (F0) were exposed during early development until 28 days post-fertilization and their progeny (F1-F3) were bred unexposed. On one hand, the effects induced by coumarin 47 suggest no multigenerational toxicity. On the other hand, we found that behavior of zebrafish larvae was significantly affected by exposure to permethrin in F1 to F3 generations with some differences depending on the concentration. This suggests persistent alteration of the neural or neuromuscular function. In addition, lipidomic analyses showed that permethrin treatment was partially correlated with lysophosphatidylcholine levels in zebrafish, an important lipid for neurodevelopment. Overall, these results stress out one of the most widely used pyrethroids can trigger long-term, multi- and possibly transgenerational changes in the nervous system of zebrafish. These neurobehavioral changes echo the effects observed under direct exposure to high concentrations of permethrin and therefore call for more research on mechanisms underlying effect inheritance.


Assuntos
Cumarínicos/toxicidade , Repelentes de Insetos/toxicidade , Permetrina/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Cumarínicos/metabolismo , Ecossistema , Fertilidade/efeitos dos fármacos , Larva/efeitos dos fármacos , Metabolismo dos Lipídeos , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia
10.
Sci Total Environ ; 733: 139102, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446057

RESUMO

Microplastics (MPs) lipophilic nature and widespread distribution raises concerns due to their increasing presence in the marine environment and their ability to adsorb organic contaminants, as being potential vehicles for transport and potential source of accumulation of organic contaminants by marine organisms. The organic UV-filter, oxybenzone (BP-3) is a constituent of sunscreens and personal care products, entering the marine environment either by direct contact with swimmers or by wastewater effluents. In this study the ecotoxicological effects of exposure to low-density polyethylene (LDPE) microplastics with and without adsorbed BP-3 were investigated in the peppery furrow shell clam, Scrobicularia plana. LDPE microplastics with a size range of 11-13 µm were previously contaminated with an environmentally relevant concentration of BP-3 (82 ng g-1). S. plana individuals were exposed to a concentration of 1 mg L-1 of microplastics with and without BP-3 adsorbed in a water-sediment exposure system for 14 days. Clams were sampled at the beginning of the experiment and after 3, 7, and 14 days of exposure. Multiple biomarkers were analysed to investigate the effect of exposure in different clam tissues, gills, digestive gland, and haemolymph. Antioxidant (superoxide dismutase, catalase, glutathione peroxidase) and biotransformation (glutathione-S-transferases) enzyme activities, oxidative damage (lipid peroxidation), genotoxicity (single and double strand DNA breaks), and neurotoxicity (acetylcholinesterase activity) were assessed along with two biomarker indexes to assess the overall health status. Results indicate that after 7 days of exposure MPs with adsorbed BP-3 induced oxidative stress and damage, when compared to exposure to virgin MPs and control treatments. Neurotoxic effects were also noted in MPs with adsorbed BP-3 after 14 days exposure, while some evidence points to increased genotoxicity with exposure time. Overall results indicate that gills were more affected by exposure to microplastics than digestive gland and that biomarkers alterations are apparently more related to the toxicity of BP-3 adsorbed than virgin MPs alone.


Assuntos
Bivalves , Poluentes Químicos da Água/análise , Animais , Benzofenonas , Biomarcadores , Microplásticos , Estresse Oxidativo , Plásticos
11.
Mar Pollut Bull ; 154: 111059, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32319895

RESUMO

The role of polyethylene microplastics 4-6 µm size (MPs) in the toxicity of environmental compounds to fish early life stages (ELS) was investigated. Marine medaka Oryzias melastigma embryos and larvae were exposed to suspended MPs spiked with three model contaminants: benzo(a)pyrene (MP-BaP), perfluorooctanesulfonic acid (MP-PFOS) and benzophenone-3 (MP-BP3) for 12 days. There was no evidence of MPs ingestion but MPs agglomerated on the surface of the chorion. Fish ELS exposed to virgin MPs did not show toxic effects. Exposure to MP-PFOS decreased embryonic survival and prevented hatching. Larvae exposed to MP-BaP or MP-BP3 exhibited reduced growth, increased developmental anomalies and abnormal behavior. Compared to equivalent waterborne concentrations, BaP and PFOS appeared to be more embryotoxic when spiked on MPs than when alone in seawater. These results suggest a relevant pollutant transfer by direct contact of MPs to fish ELS that should be included in the ecotoxicological risk assessment of MPs.


Assuntos
Microplásticos , Oryzias , Poluentes Químicos da Água , Animais , Benzo(a)pireno , Plásticos
12.
Mar Pollut Bull ; 153: 111022, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32275568

RESUMO

In microplastics (MPs) research, there is an urgent need to critically reconsider methodological approaches and results published, since public opinion and political decisions might be based on studies using debatable methods and reporting questionable results. For instance, recent studies claim that MPs induce intestinal damage and that relatively large MPs are transferred to, e.g., livers in fish. However, there is methodological criticism and considerable concern whether MP transfer to surrounding tissues is plausible. Likewise, there is an ongoing discussion in MP research if MPs act as vectors for adsorbed hazardous chemicals. In this study, effects of very small (4-6 µm) and very large (125-500 µm) benzo(a) pyrene (BaP)-spiked polyethylene (PE) particles administered via different uptake routes (food chain vs. direct uptake) were compared in a 21-day zebrafish (Danio rerio) feeding experiment. Particular care was taken to prevent cross-contamination of MPs during dissection and histological sample preparation. In contrast to numerous reports in literature describing similar approaches, independent of exposure route and MP size, no adverse effects could be detected. Likewise, no BaP accumulation could be documented, and MPs were exclusively seen in the lumen of the intestinal tract, which, however, did not induce any histopathological effects. Results indicate that in fish MPs are taken up, pass along the intestinal lumen and are excreted without any symptoms of adverse effects.


Assuntos
Microplásticos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Benzo(a)pireno , Plásticos
13.
Aquat Toxicol ; 216: 105291, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31525644

RESUMO

Most pesticides used in agriculture end up in the aquatic environment through runoff and leaching of treated crops. One of the most commonly used herbicides is glyphosate. This compound or its metabolites are frequently detected in surface water in Europe. In the present study, in vivo and in vitro studies were carried out using the early life stages of rainbow trout (Oncorhynchus mykiss) and the cell line RTL-W1 (a liver cell line from rainbow trout) to characterize the toxic effects of glyphosate at environmentally-realistic concentrations. Both studies were performed using the commercial formulation Roundup® GT Max, and technical-grade glyphosate for the in vitro study. Eyed-stage embryos were exposed for 3 weeks to sub-lethal concentrations (0.1 and 1 mg/L) of glyphosate using Roundup. Numerous toxicity endpoints were recorded such as survival, hatching success, larval biometry, developmental abnormalities, swimming activity, genotoxicity (formamidopyrimidine DNA-glycosylase Fpg-modified comet assay), lipid peroxidation (TBARS), protein carbonyls and target gene transcription. Concentrations neither affected embryonic or larval survival nor increased developmental abnormalities. However, a significant decrease was observed in the head size of larvae exposed to 1 mg/L of glyphosate. In addition, a significant increase in mobility was observed for larvae exposed to glyphosate at 0.1 mg/L. TBARS levels were significantly decreased on larvae exposed to 1 mg/L (a.i.), and cat and cox1 genes were differently transcribed from controls. DNA damage was detected by the Fpg-modified comet assay in RTL-W1 cell line exposed to the technical-grade glyphosate and Roundup formulation. The results suggest that chronic exposure to glyphosate, at environmental concentrations, could represent a potential risk for early life stages of fish.


Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Estágios do Ciclo de Vida/efeitos dos fármacos , Fígado/citologia , Oncorhynchus mykiss/crescimento & desenvolvimento , Animais , Células Sanguíneas/metabolismo , Gatos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Ensaio Cometa , Dano ao DNA , Embrião não Mamífero/efeitos dos fármacos , Exposição Ambiental , Regulação da Expressão Gênica/efeitos dos fármacos , Glicina/toxicidade , Larva/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mutagênicos/toxicidade , Oncorhynchus mykiss/sangue , Oncorhynchus mykiss/embriologia , Carbonilação Proteica/efeitos dos fármacos , Natação , Poluentes Químicos da Água/toxicidade , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...