Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Zhejiang Univ Sci B ; 24(4): 326-335, 2023 Apr 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37056208

RESUMO

Neurosurgery is a highly specialized field: it often involves surgical manipulation of noble structures and cerebral retraction is frequently necessary to reach deep-seated brain lesions. There are still no reliable methods preventing possible retraction complications. The objective of this study was to design work chambers well suited for transcranial endoscopic surgery while providing safe retraction of the surrounding brain tissue. The chamber is designed to be inserted close to the intracranial point of interest; once it is best placed it can be opened. This should guarantee an appreciable workspace similar to that of current neurosurgical procedures. The experimental aspect of this study involved the use of a force sensor to evaluate the pressures exerted on the brain tissue during the retraction phase. Following pterional craniotomy, pressure measurements were made during retraction with the use of a conventional metal spatula with different inclinations. Note that, although the force values necessary for retraction and exerted on the spatula by the neurosurgeon are the same, the local pressure exerted on the parenchyma at the edge of the spatula at different inclinations varied greatly. A new method of cerebral retraction using a chamber retractor (CR) has been designed to avoid any type of complication due to spatula edge overpressures and to maintain acceptable pressure values exerted on the parenchyma.


Assuntos
Neoplasias Encefálicas , Neurocirurgia , Humanos , Encéfalo/cirurgia , Procedimentos Neurocirúrgicos/métodos , Endoscopia
2.
J Mech Behav Biomed Mater ; 130: 105204, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35367687

RESUMO

This study focuses on the variations in the brain tissue dynamic behaviour pointing out new insight into the material nonlinear viscoelasticity. Shear dynamic response curves are obtained in different working conditions in terms of strain sweep and superimposed static compression offsets (SCO) applied in orthogonal direction to the shear. The strain sweep mode is used to study the storage and loss moduli dependence on the amplitude of the applied strain. It is found that the material exhibits linear viscoelastic behaviour up to about 0.1% strain amplitude. Above this critical threshold, the storage modulus G' decreases rapidly with increasing dynamic strain amplitude and this effect is gradually intensified as the SCO are increased. In addition, it is observed that the loss factor (G''/G') increases by increasing the SCO applied to the specimens. The dynamic strain amplitude results of the storage modulus reveal that the elastic component of the brain tissue's stiffness (G') evaluated at low strain strongly increases with increasing static superimposed compression strain while the loss factor in the same strain range appears to be SCO independent. Finally, dynamic stiffness recovery after a large strain deformation is considered. The reduction in low amplitude dynamic modulus and subsequent recovery kinetics due to a perturbation is found to be independent of the level of the SCO. The same assessments were carried out on 5 consecutive strain sweep cycle loading. It has been noticed that at the last cycle, the dissipation peak is reduced, and the non-linearity of the curve begins earlier. This could be explained by the effects of cerebral edema on cells and their surrounding environment.


Assuntos
Encéfalo , Dinâmica não Linear , Elasticidade , Humanos , Cinética , Estresse Mecânico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA