Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 52, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195581

RESUMO

The Mediterranean Sea has been sampled irregularly by research vessels in the past, mostly by national expeditions in regional waters. To monitor the hydrographic, biogeochemical and circulation changes in the Mediterranean Sea, a systematic repeat oceanographic survey programme called Med-SHIP was recommended by the Mediterranean Science Commission (CIESM) in 2011, as part of the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP). Med-SHIP consists of zonal and meridional surveys with different frequencies, where comprehensive physical and biogeochemical properties are measured with the highest international standards. The first zonal survey was done in 2011 and repeated in 2018. In addition, a network of meridional (and other key) hydrographic sections were designed: the first cycle of these sections was completed in 2016, with three cruises funded by the EU project EUROFLEETS2. This paper presents the physical and chemical data of the meridional and key transects in the Western and Eastern Mediterranean Sea collected during those cruises.

2.
Global Biogeochem Cycles ; 36(6): e2021GB007233, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35865129

RESUMO

Biogeographical classifications of the global ocean generalize spatiotemporal trends in species or biomass distributions across discrete ocean biomes or provinces. These classifications are generally based on a combination of remote-sensed proxies of phytoplankton biomass and global climatologies of biogeochemical or physical parameters. However, these approaches are limited in their capacity to account for subsurface variability in these parameters. The deployment of autonomous profiling floats in the Biogeochemical Argo network over the last decade has greatly increased global coverage of subsurface measurements of bio-optical proxies for phytoplankton biomass and physiology. In this study, we used empirical orthogonal function analysis to identify the main components of variability in a global data set of 422 annual time series of Chlorophyll a fluorescence and optical backscatter profiles. Applying cluster analysis to these results, we identified six biomes within the global ocean: two high-latitude biomes capturing summer bloom dynamics in the North Atlantic and Southern Ocean and four mid- and low-latitude biomes characterized by variability in the depth and frequency of deep chlorophyll maximum formation. We report the distribution of these biomes along with associated trends in biogeochemical and physicochemical environmental parameters. Our results demonstrate light and nutrients to explain most variability in phytoplankton distributions for all biomes, while highlighting a global inverse relationship between particle stocks in the euphotic zone and transfer efficiency into the mesopelagic zone. In addition to partitioning seasonal variability in vertical phytoplankton distributions at the global scale, our results provide a potentially novel biogeographical classification of the global ocean.

3.
Sensors (Basel) ; 21(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577421

RESUMO

Measuring the underwater light field is a key mission of the international Biogeochemical-Argo program. Since 2012, 0-250 dbar profiles of downwelling irradiance at 380, 412 and 490 nm besides photosynthetically available radiation (PAR) have been acquired across the globe every 1 to 10 days. The resulting unprecedented amount of radiometric data has been previously quality-controlled for real-time distribution and ocean optics applications, yet some issues affecting the accuracy of measurements at depth have been identified such as changes in sensor dark responsiveness to ambient temperature, with time and according to the material used to build the instrument components. Here, we propose a quality-control procedure to solve these sensor issues to make Argo radiometry data available for delayed-mode distribution, with associated error estimation. The presented protocol requires the acquisition of ancillary radiometric measurements at the 1000 dbar parking depth and night-time profiles. A test on >10,000 profiles from across the world revealed a quality-control success rate >90% for each band. The procedure shows similar performance in re-qualifying low radiometry values across diverse oceanic regions. We finally recommend, for future deployments, acquiring daily 1000 dbar measurements and one night profile per year, preferably during moonless nights and when the temperature range between the surface and 1000 dbar is the largest.


Assuntos
Óptica e Fotônica , Radiometria , Oceanos e Mares , Controle de Qualidade , Temperatura
4.
Geophys Res Lett ; 48(15): e2021GL093470, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34433995

RESUMO

Deep Chlorophyll Maxima (DCM) are ubiquitous features in stratified oceanic systems. Their establishment and maintenance result from hydrographical stability favoring specific environmental conditions with respect to light and nutrient availability required for phytoplankton growth. This stability can potentially be challenged by mesoscale eddies impacting the water column's vertical structure and thus the environmental parameters that condition the subsistence of DCMs. Here, data from the global BGC-Argo float network are collocated with mesoscale eddies to explore their impact on DCMs. We show that cyclonic eddies, by providing optimal light and nutrient conditions, increase the occurrence of DCMs characterized by Deep Biomass Maxima for phytoplankton. In contrast, DCMs in anticyclonic eddies seem to be driven by photoacclimation as they coincide with Deep Acclimation Maxima without biomass accumulation. These findings suggest that the two types of eddies potentially have different impacts on the role of DCMs in global primary production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...