Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 332: 121966, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290635

RESUMO

Several human activities often result in increased nitrogen (N) and phosphorus (P) inputs to running waters through runoff. Although headwater streams are less frequently affected by these inputs than downstream reaches, the joint effects of moderate eutrophication and global warming can affect the functioning of these ecosystems, which represent two thirds of total river length and thus are of major global relevance. In a microcosm study representing streams from a temperate area (northern Spain), we assessed the combined effects of increased water temperature (10.0, 12.5, and 15.0 °C) and nutrient enrichment (control, high N, high P, and high N + P concentrations) on the key process of leaf litter decomposition (mediated by microorganisms and detritivores) and associated changes in different biological compartments (leaf litter, aquatic hyphomycetes and detritivores). While warming consistently enhanced decomposition rates and associated variables (leaf litter microbial conditioning, aquatic hyphomycete sporulation rate and taxon richness, and detritivore growth and nutrient contents), effects of eutrophication were weaker and more variable: P addition inhibited decomposition, addition of N + P promoted leaf litter conditioning, and detritivore stoichiometry was affected by the addition of both nutrients separately or together. In only a few cases (variables related to detritivore performance, but not microbial performance or leaf litter decomposition) we found interactions between warming and eutrophication, which contrasts with other experiments reporting synergistic effects. Our results suggest that both stressors can importantly alter the functioning of stream ecosystems even when occurring in isolation, although non-additive effects should not be neglected and might require exploring an array of ecosystem processes (not just leaf litter decomposition) in order to be detected.


Assuntos
Ecossistema , Folhas de Planta , Humanos , Rios , Nitrogênio , Fósforo
2.
Environ Res ; 209: 112808, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35085565

RESUMO

Microplastics (MPs) have been recognized as one of the most ubiquitous environmental pollutants globally. They have been found in all ecosystems studied to date, threatening biological diversity, ecosystem functioning and human health. The present study aimed to elucidate the environmental and anthropogenic drivers of MP dynamics in the whole catchment of the Biobío river, one of the largest rivers in South America. MP concentration and characteristics were analysed in 18 sites subjected to different sources of pollution and other human-related impacts. The sampling sites were classified in relation to altitudinal zones (highland, midland and lowland) and ecosystem types (fluvial and reservoir), and different water and territorial environmental variables were further collated and considered for analysis. Seven types of microplastic polymers were identified in the samples analysed, with a catchment mean (±SE) MP concentration of 22 ± 0.4 particles m-3, and MP presence being significantly higher in lowlands (26 ± 2 particle m-3) and in reservoirs (42 ± 14 particle m-3). The most abundant type of MP was fragments (84%), with a mean concentration of 37 ± 6 particles m-3. Overall, MP concentrations were low compared to those found in other studies, with a strong influence of human population size.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Humanos , Plásticos/análise , Rios , Poluentes Químicos da Água/análise
3.
Nat Commun ; 12(1): 3700, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140471

RESUMO

The relationship between detritivore diversity and decomposition can provide information on how biogeochemical cycles are affected by ongoing rates of extinction, but such evidence has come mostly from local studies and microcosm experiments. We conducted a globally distributed experiment (38 streams across 23 countries in 6 continents) using standardised methods to test the hypothesis that detritivore diversity enhances litter decomposition in streams, to establish the role of other characteristics of detritivore assemblages (abundance, biomass and body size), and to determine how patterns vary across realms, biomes and climates. We observed a positive relationship between diversity and decomposition, strongest in tropical areas, and a key role of abundance and biomass at higher latitudes. Our results suggest that litter decomposition might be altered by detritivore extinctions, particularly in tropical areas, where detritivore diversity is already relatively low and some environmental stressors particularly prevalent.


Assuntos
Biota , Ecossistema , Rios , Animais , Biodiversidade , Biomassa , Tamanho Corporal , Chironomidae/fisiologia , Clima , Ephemeroptera/fisiologia , Insetos/fisiologia , Folhas de Planta/química , Floresta Úmida , Rios/química , Rios/microbiologia , Rios/parasitologia , Rios/virologia , Clima Tropical , Tundra
4.
Environ Pollut ; 285: 117243, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33962306

RESUMO

Understanding which factors affect the process of leaf litter decomposition is crucial if we are to predict changes in the functioning of stream ecosystems as a result of human activities. One major activity with known consequences on streams is agriculture, which is of particular concern in tropical regions, where forests are being rapidly replaced by crops. While pesticides are potential drivers of reduced decomposition rates observed in agricultural tropical streams, their specific effects on the performance of decomposers and detritivores are mostly unknown. We used a microcosm experiment to examine the individual and joint effects of an insecticide (chlorpyrifos) and a fungicide (chlorothalonil) on survival and growth of detritivores (Anchytarsus, Hyalella and Lepidostoma), aquatic hyphomycetes (AH) sporulation rate, taxon richness, assemblage structure, and leaf litter decomposition rates. Our results revealed detrimental effects on detritivore survival (which were mostly due to the insecticide and strongest for Hyalella), changes in AH assemblage structure, and reduced sporulation rate, taxon richness and microbial decomposition (mostly in response to the fungicide). Total decomposition was reduced especially when the pesticides were combined, suggesting that they operated differently and their effects were additive. Importantly, effects on decomposition were greater for single-species detritivore treatments than for the 3-species mixture, indicating that detritivore species loss may exacerbate the consequences of pesticides of stream ecosystem functioning.


Assuntos
Fungicidas Industriais , Praguicidas , Ecossistema , Fungicidas Industriais/toxicidade , Humanos , Praguicidas/toxicidade , Folhas de Planta , Rios
5.
Sci Rep ; 11(1): 9849, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972582

RESUMO

Several studies have examined the transmission dynamics of the novel COVID-19 disease in different parts of the world. Some have reported relationships with various environmental variables, suggesting that spread of the disease is enhanced in colder and drier climates. However, evidence is still scarce and mostly limited to a few countries, particularly from Asia. We examined the potential role of multiple environmental variables in COVID-19 infection rate [measured as mean relative infection rate = (number of infected inhabitants per week / total population) × 100.000) from February 23 to August 16, 2020 across 360 cities of Chile. Chile has a large climatic gradient (≈ 40º of latitude, ≈ 4000 m of altitude and 5 climatic zones, from desert to tundra), but all cities share their social behaviour patterns and regulations. Our results indicated that COVID-19 transmission in Chile was mostly related to three main climatic factors (minimum temperature, atmospheric pressure and relative humidity). Transmission was greater in colder and drier cities and when atmospheric pressure was lower. The results of this study support some previous findings about the main climatic determinants of COVID-19 transmission, which may be useful for decision-making and management of the disease.


Assuntos
COVID-19/transmissão , Meio Ambiente , SARS-CoV-2/isolamento & purificação , Estações do Ano , Altitude , Pressão Atmosférica , COVID-19/epidemiologia , COVID-19/virologia , Chile/epidemiologia , Humanos , Umidade , Pandemias , SARS-CoV-2/fisiologia , Temperatura , Tundra
6.
Ecotoxicol Environ Saf ; 216: 112226, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33848739

RESUMO

Freshwater organisms are often sensitive to pesticides, but their sensitivity varies across different taxa and with pesticide type and action mode, as shown by multiple acute toxicity tests. Such variability hampers predictions about how freshwater ecosystems may be altered by pesticide toxicity, which is especially critical for understudied areas of the world such as the tropics. Furthermore, there is little information about the sensitivity of some organisms that are key components of stream food webs; this is the case of litter-feeding detritivorous invertebrates, which contribute to the fundamental process of litter decomposition. Here, we examined the sensitivity of three common detritivores [Anchytarsus sp. (Coleoptera: Ptilodactylidae), Hyalella sp. (Amphipoda: Hyalellidae) and Lepidostoma sp. (Trichoptera: Lepidostomatidae)] to three pesticides commonly used (the insecticides bifenthrin and chlorpyrifos and the fungicide chlorothalonil) using acute (48 or 96 h) toxicity tests. Our study demonstrates that common-use pesticides provoke the mortality of half their populations at concentrations of 0.04-2.7 µg L-1. We found that all species were sensitive to the three pesticides, with the highest sensitivity found for chlorpyrifos. Additionally, we used the approach of species sensitivity distributions (SSD) to compare our study species with Daphnia magna and other temperate and tropical invertebrates. We found that the study species were among the most sensitive species to chlorpyrifos and chlorothalonil. Our results suggest that tropical detritivores merit special attention in ecological risk assessment of pesticides and highlight the need for accurate ecotoxicological information from ecologically relevant species in the tropics.

7.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33771867

RESUMO

Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes.

8.
PLoS One ; 15(8): e0231683, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764752

RESUMO

Aquatic macroinvertebrates play a crucial role in freshwater ecosystems, but their diversity remains poorly known, particularly in the tropics. This "taxonomic void" limits our understanding of biodiversity patterns and processes in freshwater ecosystems, and the scale at which they operate. We used DNA barcoding to estimate lineage diversity (and the diversity of unique haplotypes) in 224 specimens of freshwater macroinvertebrates at a small spatial scale within the Panama Canal Watershed (PCW). In addition, we compiled available barcoding data to assess macroinvertebrate diversity at a broader spatial scale spanning the Isthmus of Panama. Consistently across two species delimitation algorithms (i.e., ABGD and GMYC), we found high lineage diversity within the PCW, with ~ 100-106 molecular operational taxonomic units (MOTUs) across 168 unique haplotypes. We also found a high lineage diversity along the Isthmus of Panama, but this diversity peaked within the PCW. However, our rarefaction/extrapolation approach showed that this diversity remains under-sampled. As expected, these results indicate that the diversity of Neotropical freshwater macroinvertebrates is higher than previously thought, with the possibility of high endemicity even at narrow spatial scales. Consistent with previous work on aquatic insects and other freshwater taxa in this region, geographic isolation is likely a main factor shaping these patterns of diversity. However, other factors such as habitat variability and perhaps local adaptation might be reshaping these patterns of diversity at a local scale. Although further research is needed to better understand the processes driving diversification in freshwater macroinvertebrates, we suggest that Neotropical streams hold a high proportion of hidden biodiversity. Understanding this diversity is crucial in the face of increasing human disturbance.


Assuntos
Biologia de Ecossistemas de Água Doce/métodos , Insetos/classificação , Invertebrados/genética , Animais , Biodiversidade , DNA/genética , Código de Barras de DNA Taxonômico/métodos , Ecossistema , Água Doce , Insetos/genética , Panamá , Zona do Canal do Panamá , Filogenia , Rios
9.
Sci Total Environ ; 745: 140950, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32731071

RESUMO

The expansion of agriculture is particularly worrying in tropical regions of the world, where native forests are being replaced by crops at alarming rates, with severe consequences for biodiversity and ecosystems. However, there is little information about the potential effects of agriculture on the functioning of tropical streams, which is essential if we are to assess the condition and ecological integrity of these ecosystems. We conducted a litter decomposition experiment in streams within a tropical catchment, which were subjected to different degrees of agricultural influence: low (protected area, PA), medium (buffer area, BA) and high (agricultural area, AA). We quantified decomposition rates of litter enclosed within coarse-mesh and fine-mesh bags, which allowed the distinction of microbial and detritivore-mediated decomposition pathways. We used litter of three riparian species representing a gradient in litter quality (Alnus acuminata > Ficus insipida > Quercus bumelioides), and examined detritivore assemblages through the contents of litterbags and benthic samples. We found that the increasing agricultural influence promoted microbial decomposition, probably due to nutrient-mediated stimulation; and inhibited detritivore-mediated and total decomposition because of reduced detritivore numbers, most likely caused by pesticides and sedimentation. Effects were evident for Alnus and Ficus, but not for Quercus, which was barely decomposed across the gradient. Our study provides key evidence about the impact of agriculture on tropical stream ecosystem functioning, which is associated to changes in stream assemblages and may have far-reaching repercussions for global biochemical cycles.


Assuntos
Ecossistema , Rios , Agricultura , Biodiversidade , Folhas de Planta
10.
J Environ Manage ; 263: 110425, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32179487

RESUMO

Fungicides can reach streams through runoff or adhered to leaf litter, and have the potential to adversely affect processes such as litter decomposition and associated communities. This study investigated the effects of chlorothalonil, a widely used fungicide, on litter decomposition, detritivorous invertebrates (larvae of the insect Sericostoma pyrenaicum) and aquatic hyphomycetes (AHs), using stream microcosms. We considered the single and combined effects of two exposure modes: waterborne fungicide (at two concentrations: 0.125 µg L-1 and 1.25 µg L-1) and litter previously sprayed with the fungicide (i.e., pre-treated litter, using the application dose concentration of 1250 µg L-1). We also assessed whether fungicide effects on invertebrates, AHs and decomposition varied among litter types (i.e., different plant species), and whether plant diversity mitigated any of those effects. Invertebrate survival and AH sporulation rate and taxon richness were strongly reduced by most combinations of fungicide exposure modes; however, invertebrates were not affected by the low waterborne concentration, whereas AHs suffered the highest reduction at this concentration. Total decomposition was slowed down by both exposure modes, and microbial decomposition was reduced by litter pre-treatment, while the waterborne fungicide had different effects depending on plant species. In general, with the exception of microbial decomposition, responses varied little among litter types. Moreover, and contrary to our expectation, plant diversity did not modulate the fungicide effects. Our results highlight the severity of fungicide inputs to streams through effects on invertebrate and microbial communities and ecosystem functioning, even in streams with well-preserved, diverse riparian vegetation.


Assuntos
Fungicidas Industriais , Fungos Mitospóricos , Animais , Ecossistema , Insetos , Folhas de Planta , Rios
11.
PLoS One ; 14(8): e0220528, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31393898

RESUMO

Tropical forests are declining at unprecedented rates in favour of agriculture, and streams can be severely impacted due to effects of multiple stressors that have rarely been considered together in tropical studies. We studied the effects of multiple stressors associated with agricultural practices (pesticide toxicity, nutrient enrichment and habitat alteration-quantified as TUmax, soluble reactive phosphorus concentration and sedimentation, respectively) on macroinvertebrate communities in a tropical catchment in Panama (13 stream sites sampled in 20 occasions from 2015 to 2017, with 260 samples in total). We examined how macroinvertebrate abundance, taxonomic richness, community composition and biotic indices (SPEAR and BMWP/PAN, which were specifically designed to detect pesticide toxicity and nutrient enrichment, respectively) varied depending on the studied stressors, considering their single and combined effects. Our analyses revealed significant effects of the studied stressors on macroinvertebrate communities, with two particular results that merit further attention: (1) the fact that pesticide toxicity affected BMWP/PAN, but not SPEAR, possibly because the former had been adapted for local fauna; and (2) that most stressors showed antagonistic interactions (i.e., lower combined effects than expected from their individual effects). These results highlight the need for toxicity bioassays with tropical species that allow adaptations of biotic indices, and of observational and manipulative studies exploring the combined effects of multiple stressors on tropical macroinvertebrate communities and ecosystems, in order to predict and manage future anthropogenic impacts on tropical streams.


Assuntos
Ecossistema , Monitoramento Ambiental , Florestas , Invertebrados , Rios , Clima Tropical , Poluição da Água , Animais , Invertebrados/classificação , Invertebrados/crescimento & desenvolvimento , Panamá
13.
Zootaxa ; 3994(3): 445-8, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26250285

RESUMO

The perlid genus Anacroneuria is the most widely distributed stonefly occurring in the Neotropics. Regional studies of this genus were made early in the last century, whereas local taxonomic and distributional studies have recently increased. In this study, we provide new Central American records for four species of Anacroneuria. Anacroneuria choco Stark & Bersosa 2006, A. costana (Navás 1924), A. hacha Stark 1998, and A. laru Gutiérrez-Fonseca 2015 are newly reported including new range extensions.


Assuntos
Insetos/classificação , Distribuição Animal , Animais , América Central , Masculino
14.
Ecology ; 92(9): 1839-48, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21939080

RESUMO

Most hypotheses explaining the general gradient of higher diversity toward the equator are implicit or explicit about greater species packing in the tropics. However, global patterns of diversity within guilds, including trophic guilds (i.e., groups of organisms that use similar food resources), are poorly known. We explored global diversity patterns of a key trophic guild in stream ecosystems, the detritivore shredders. This was motivated by the fundamental ecological role of shredders as decomposers of leaf litter and by some records pointing to low shredder diversity and abundance in the tropics, which contrasts with diversity patterns of most major taxa for which broad-scale latitudinal patterns haven been examined. Given this evidence, we hypothesized that shredders are more abundant and diverse in temperate than in tropical streams, and that this pattern is related to the higher temperatures and lower availability of high-quality leaf litter in the tropics. Our comprehensive global survey (129 stream sites from 14 regions on six continents) corroborated the expected latitudinal pattern and showed that shredder distribution (abundance, diversity and assemblage composition) was explained by a combination of factors, including water temperature (some taxa were restricted to cool waters) and biogeography (some taxa were more diverse in particular biogeographic realms). In contrast to our hypothesis, shredder diversity was unrelated to leaf toughness, but it was inversely related to litter diversity. Our findings markedly contrast with global trends of diversity for most taxa, and with the general rule of higher consumer diversity at higher levels of resource diversity. Moreover, they highlight the emerging role of temperature in understanding global patterns of diversity, which is of great relevance in the face of projected global warming.


Assuntos
Biodiversidade , Cadeia Alimentar , Invertebrados/fisiologia , Animais , Demografia , Comportamento Alimentar
15.
Ecol Lett ; 14(3): 289-94, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21299824

RESUMO

The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback.


Assuntos
Água Doce , Folhas de Planta/metabolismo , Ciclo do Carbono , Dióxido de Carbono , Sequestro de Carbono , Mudança Climática , Ecossistema , Plantas/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...