Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycorrhiza ; 33(5-6): 333-344, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572110

RESUMO

Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts of most land plants. In these organisms, thousands of nuclei that are either genetically similar (homokaryotic) or derived from two distinct parents (dikaryotic) co-exist in a large syncytium. Here, we investigated the impact of these two nuclear organizations on the mycorrhizal response of potatoes (Solanum tuberosum) by inoculating four potato cultivars with eight Rhizophagus irregularis strains individually (four homokaryotic and four dikaryotic). By evaluating plant and fungal fitness-related traits four months post inoculation, we found that AMF genetic organization significantly affects the mycorrhizal response of host plants. Specifically, homokaryotic strains lead to higher total, shoot, and tuber biomass and a higher number of tubers, compared to dikaryotic strains. However, fungal fitness-related traits showed no clear differences between homokaryotic and dikaryotic strains. Nucleotype content analysis of single spores confirmed that the nucleotype ratio of AMF heterokaryon spores can shift depending on host identity. Together, these findings continue to highlight significant ecological differences derived from the two distinct genetic organizations in AMF.


Assuntos
Micorrizas , Solanum tuberosum , Micorrizas/genética , Fenótipo , Plantas/microbiologia , Biomassa , Fungos
2.
New Phytol ; 233(3): 1097-1107, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34747029

RESUMO

Chromosome folding links genome structure with gene function by generating distinct nuclear compartments and topologically associating domains. In mammals, these undergo preferential interactions and regulate gene expression. However, their role in fungal genome biology is unclear. Here, we combine Nanopore (ONT) sequencing with chromatin conformation capture sequencing (Hi-C) to reveal chromosome and epigenetic diversity in a group of obligate plant symbionts: the arbuscular mycorrhizal fungi (AMF). We find that five phylogenetically distinct strains of the model AMF Rhizophagus irregularis carry 33 chromosomes with substantial within-species variability in size, as well as in gene and repeat content. Strain-specific Hi-C contact maps reveal a 'checkerboard' pattern that underline two dominant euchromatin (A) and heterochromatin (B) compartments. Each compartment differs in the level of gene transcription, regulation of candidate effectors and methylation frequencies. The A-compartment is more gene-dense and contains most core genes, while the B-compartment is more repeat-rich and has higher rates of chromosomal rearrangement. While the B-compartment is transcriptionally repressed, it has significantly more secreted proteins and in planta upregulated candidate effectors, suggesting a possible host-induced change in chromosome conformation. Overall, this study provides a fine-scale view into the genome biology and evolution of model plant symbionts, and opens avenues to study the epigenetic mechanisms that modify chromosome folding during host-microbe interactions.


Assuntos
Glomeromycota , Micorrizas , Fungos , Genoma Fúngico , Glomeromycota/genética , Glomeromycota/metabolismo , Micorrizas/fisiologia , Plantas/genética
3.
Fungal Genet Biol ; 158: 103639, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800644

RESUMO

Arbuscular mycorrhizal fungi (AMF) are widespread obligate root symbionts that assist plants in obtaining nutrients and protection against environmental stresses. In the model species Rhizophagus irregularis, heterokaryotic strains (AMF dikaryons) carry thousands of nuclei originating from two parental strains whose frequency varies depending on strains and host identity. Here, using digital droplet PCR, we demonstrate that surrounding abiotic factors (temperature, phosphorus, and pH) also change the nuclear dynamics of such strains in root organ cultures. Furthermore, when spatially separated portions of the AMF mycelium grow under different abiotic conditions, all the produced spores carry highly similar nuclear ratios. Overall, these findings demonstrate that abiotic stressors impact the nuclear organization of a widespread group of multinucleate plant symbionts, and reveal remarkable mechanisms of nuclear ratio harmonization across the mycelium in these prominent symbionts.


Assuntos
Micorrizas , Fungos , Micélio/genética , Micorrizas/genética , Fósforo , Raízes de Plantas
4.
Front Plant Sci ; 12: 715377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421967

RESUMO

Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts that have the potential to improve crop yield. These multinucleate organisms are either "homokaryotic" or "dikaryotic". In AMF dikaryons, thousands of nuclei originating from two parental strains coexist in the same cytoplasm. In other fungi, homokaryotic and dikaryotic strains show distinct life history traits (LHTs), such as variation in growth rates and fitness. However, how such traits compare between dikaryons and homokaryons of AMF is unknown. To address this, we measured 20 LHT of four dikaryons and five homokaryons of the model fungus Rhizophagus irregularis across root organ cultures of three host plants (carrot, chicory, and tobacco). Our analyses show that dikaryons have clearly distinct life history strategies (LHSs) compared to homokaryons. In particular, spores of homokaryons germinate faster and to a higher proportion than dikaryons, whereas dikaryons grow significantly faster and create a more complex hyphal network irrespective of host plant species. Our study links AMF nuclear status with key LHT with possible implications for mycorrhizal symbiotic functioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...