Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 36(7): 1608-20, 1997 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-9048544

RESUMO

The crystal structure of the complex between the copper amine oxidase from Escherichia coli (ECAO) and a covalently bound inhibitor, 2-hydrazinopyridine, has been determined to a resolution of 2.0 A. The inhibitor covalently binds at the 5 position of the quinone ring of the cofactor, 2,4,5-trihydroxyphenylalaninequinone (TPQ). The inhibitor complex is analogous to the substrate Schiff base formed during the reaction with natural monoamine substrate. A proton is abstracted from a methylene group adjacent to the amine group by a catalytic base during the reaction. The inhibitor, however, has a nitrogen at this position, preventing proton abstraction and trapping the enzyme in a covalent complex. The electron density shows this nitrogen is hydrogen bonded to the side chain of Asp383, a totally conserved residue, identifying it as the probable catalytic base. The positioning of Asp383 is such that the pro-S proton of a substrate would be abstracted, consistent with the stereospecificity of the enzyme determined by 1H NMR spectroscopy. Site-directed mutagenesis and in vivo suppression have been used to substitute Asp383 for 12 other residues. The resulting proteins either lack or, in the case of glutamic acid, have very low enzyme activity consistent with an essential catalytic role for Asp383. The O4 position on the quinone ring is involved in a short hydrogen bond with the hydroxyl of conserved residue Tyr369. The distance between the oxygens is less than 2.5 A, consistent with a shared proton, and suggesting ionization at the O4 position of the quinone ring. The Tyr369 residue appears to play an important role in stabilizing the position of the quinone/inhibitor complex. The O2 position on the quinone ring is hydrogen bonded to the apical water ligand of the copper. The basal water ligand, which lies 2.0 A from the copper in the native structure, is at a distance of 3.0 A in the complex. In the native structure, the active site is completely buried, with no obvious route for entry of substrate. In the complex, the tip of the pyridine ring of the bound inhibitor is on the surface of the protein at the edge of the interface between domains 3 and 4, suggesting this as the entry point for the amine substrate.


Assuntos
Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/metabolismo , Escherichia coli/enzimologia , Sítios de Ligação , Catálise , Cobre/química , Cristalografia por Raios X , Elétrons , Escherichia coli/química , Ligantes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Piridonas/química , Estereoisomerismo
2.
Structure ; 3(11): 1171-84, 1995 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-8591028

RESUMO

BACKGROUND: Copper amine oxidases are a ubiquitous and novel group of quinoenzymes that catalyze the oxidative deamination of primary amines to the corresponding aldehydes, with concomitant reduction of molecular oxygen to hydrogen peroxide. The enzymes are dimers of identical 70-90 kDa subunits, each of which contains a single copper ion and a covalently bound cofactor formed by the post-translational modification of a tyrosine side chain to 2,4,5-trihydroxyphenylalanine quinone (TPQ). RESULTS: The crystal structure of amine oxidase from Escherichia coli has been determined in both an active and an inactive form. The only structural differences are in the active site, where differences in copper coordination geometry and in the position and interactions of the redox cofactor, TPQ, are observed. Each subunit of the mushroom-shaped dimer comprises four domains: a 440 amino acid C-terminal beta sandwich domain, which contains the active site and provides the dimer interface, and three smaller peripheral alpha/beta domains (D1-D3), each of about 100 amino acids. D2 and D3 show remarkable structural and sequence similarity to each other and are conserved throughout the quinoenzyme family. In contrast, D1 is absent from some amine oxidases. The active sites are well buried from solvent and lie some 35 A apart, connected by a pair of beta hairpin arms. CONCLUSIONS: The crystal structure of E. coli copper amine oxidase reveals a number of unexpected features and provides a basis for investigating the intriguing similarities and differences in catalytic mechanism of members of this enzyme family. In addition to the three conserved histidines that bind the copper, our studies identify a number of other conserved residues close to the active site, including a candidate for the catalytic base and a fourth conserved histidine which is involved in an interesting intersubunit interaction.


Assuntos
Amina Oxidase (contendo Cobre)/química , Proteínas de Bactérias/química , Di-Hidroxifenilalanina/análogos & derivados , Escherichia coli/enzimologia , Modelos Moleculares , Conformação Proteica , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Catálise , Clonagem Molecular , Cristalografia por Raios X , Di-Hidroxifenilalanina/química , Histidina/química , Dados de Sequência Molecular , Alinhamento de Sequência
3.
J Nematol ; 25(4): 548-54, 1993 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19279808

RESUMO

Three genes in the major sperm protein (MSP) gene family from the potato cyst nematode Globodera rostochiensis were cloned and sequenced. In contrast to the absence of introns in Caenorhabditis elegans MSP genes, these genes in G. rostochiensis contained a 57 nucleotide intron, with normal exon-intron boundaries, in the same relative location as the intron in Onchocerca volvulus. The MSP genes of G. rostochiensis had putative CAAT, TATA, and polyadenylation signals. The predicted G. rostochiensis MSP gene product is 126 amino acids long, one residue shorter than the products in the other species. The comparison of MSP amino acid sequences from four diverse nematode species suggests that O. volvulus, Ascaris suum, and C. elegans may be more closely related to each other than they are to G. rostochiensis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...