Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 117(7): 2026-31, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23294006

RESUMO

The coherent excitations of DNA hydration water at 100 K have been investigated by neutron scattering spectroscopy to extract the excess signal of D(2)O-hydrated DNA with respect to dry DNA samples. A structural characterization of the sample, through the analysis of the static structure factor, has suggested that DNA hydration water is largely in an amorphous state up to high hydration degree, with only a small contribution coming from slightly deformed crystalline ice. To describe the inelastic spectra of DNA hydration water, we exploited a phenomenological model already applied in similar disordered systems, such as bulk water (Sacchetti et al. Phys. Rev. E2004, 69, 061203; Petrillo et al. Phys. Rev. E2000, 62, 3611-3618; Sette et al. Phys. Rev. Lett.1996, 77, 83-86) and protein hydration water (Orecchini et al. J. Am. Chem. Soc.2009, 131, 4664-4669). Over the low-energy range, the coherent dynamics of DNA hydration water is characterized by a branch at about 7.5 meV, a value slightly larger than that of bulk water. An additional mode in the energy range 20-35 meV is found, with a wavevector dependence seemingly connected with the structural features of amorphous ice. The ensemble of the results supports the glassy nature of DNA hydration water.


Assuntos
DNA/química , Água/química , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Temperatura
2.
J Chem Phys ; 135(2): 025101, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21766968

RESUMO

The coherent density fluctuations propagating through DNA hydration water were studied by neutron scattering spectroscopy. Two collective modes were found to be sustained by the aqueous solvent: a propagating excitation, characterised by a speed of about 3500 m/s, and another one placed at about 6 meV. These results globally agree with those previously found for the coherent excitations in bulk water, although in DNA hydration water the speed of propagating modes is definitely higher than that of the pure solvent. The short-wavelength collective excitations of DNA hydration water are reminiscent of those observed in protein hydration water and in the amorphous forms of ice.


Assuntos
DNA/química , Água/química , Animais , Difração de Nêutrons , Salmão
3.
Phys Rev Lett ; 95(15): 158104, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16241767

RESUMO

Through elastic neutron scattering we investigated the fast dynamics of lysozyme in hydrated powder form or embedded in glycerol-water and glucose-water matrices. We calculated the relaxational contribution to the mean square displacements of protein hydrogen atoms. We found that the inverse of this quantity is linearly proportional to the logarithm of the viscosity of the solvent glassy matrix. This relationship suggests a close connection between the picosecond-time-scale dynamics of protein side chains and the solvent structural relaxation.


Assuntos
Glucose/química , Glicerol/química , Modelos Químicos , Muramidase/química , Proteínas/química , Solventes/química , Água/química , Simulação por Computador , Transição de Fase , Fatores de Tempo , Viscosidade
4.
J Chem Phys ; 123(2): 24302, 2005 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-16050740

RESUMO

We report molecular-beam measurements of the total integral cross sections for the scattering of water molecules by helium atoms. A combined analysis of the new experimental data together with available differential cross section results has allowed an accurate determination of the isotropic component of the interaction potential for this prototypical system. The potential well shows a depth of 0.265 +/- 0.010 kJ/mol at a distance between He and the center of mass of the water molecule of 0.345 +/- 0.02 nm. An effective isotropic long-range attraction constant C(LR) = (6.3+/-0.3) x 10(-4) kJ mol(-1) nm(-6), including both dispersion and induction contributions, has also been determined. The most recent and accurate ab initio potential-energy surfaces have been tested against these new experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA