Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Biobehav Rev ; 161: 105679, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642866

RESUMO

In this mini-review, we summarize the brain distribution of aromatase, the enzyme catalyzing the synthesis of estrogens from androgens, and the mechanisms responsible for regulating estrogen production within the brain. Understanding this local synthesis of estrogens by neurons is pivotal as it profoundly influences various facets of social behavior. Neuroestrogen action spans from the initial processing of socially pertinent sensory cues to integrating this information with an individual's internal state, ultimately resulting in the manifestation of either pro-affiliative or - aggressive behaviors. We focus here in particular on aggressive and sexual behavior as the result of correct individual recognition of intruders and potential mates. The data summarized in this review clearly point out the crucial role of locally synthesized estrogens in facilitating rapid adaptation to the social environment in rodents and birds of both sexes. These observations not only shed light on the evolutionary significance but also indicate the potential implications of these findings in the realm of human health, suggesting a compelling avenue for further investigation.


Assuntos
Estrogênios , Comportamento Social , Animais , Humanos , Estrogênios/metabolismo , Aromatase/metabolismo , Encéfalo/fisiologia , Encéfalo/metabolismo , Reconhecimento Psicológico/fisiologia , Comportamento Sexual Animal/fisiologia , Comportamento Sexual/fisiologia
2.
J Neuroendocrinol ; 35(10): e13341, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37806316

RESUMO

The activation of male sexual behavior depends on brain estrogen synthesis. Estrogens act through nuclear and membrane receptors producing effects within hours/days or seconds/minutes, respectively. In mice, estrogen receptor alpha (ERα) is the main estrogen receptor (ER) controlling the activation of male sexual behavior. Although neuroestrogens rapidly modulate mouse sexual behavior, it is not known whether these effects involve membrane ERα (mERα). This study combines two complementary approaches to address this question. C451A-ERα mice carry an ERα that cannot signal at the membrane, while estetrol (E4) is a natural estrogen acting as an agonist on nuclear ERα but as an antagonist on membrane ERα. In wild-type males, E4 decreased the number of mounts and intromissions after 10 min. In C451A-ERα males, E4 also altered sexual performance but after 30 min. E4 did not affect time spent near the female in both wild-type and C451A-ERα mice. However, regardless of genotype, the aromatase inhibitor 1,4,6-Androstatriene-3,17-dione (ATD) decreased both sexual performance and the time spent near the female after 10 and 30 min, confirming the key role of aromatization in the rapid control of sexual behavior and motivation. In conclusion, the shift in timing at which the effect of E4 is observed in mice lacking mERα suggests a role for mERα in the regulation of rapid effects of neuroestrogens on sexual performance, thus providing the first demonstration that E4 acts as an antagonist of a mER in the brain. The persisting effect of ATD on behavior in C451A-ERα mice also suggests the implication of another ER.


Assuntos
Receptor alfa de Estrogênio , Comportamento Sexual Animal , Animais , Feminino , Masculino , Camundongos , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Estrogênios , Motivação , Receptores de Estrogênio
3.
Horm Behav ; 155: 105410, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567061

RESUMO

Behavioral neuroendocrinology has largely relied on mammalian models to understand the relationship between hormones and behavior, even if this discipline has historically used a larger diversity of species than other fields. Recent advances revealed the potential of avian models in elucidating the neuroendocrine bases of behavior. This paper provides a review focused mainly on the contributions of our laboratory to the study of sexual differentiation in Japanese quail and songbirds. Quail studies have firmly established the role of embryonic estrogens in the sexual differentiation of male copulatory behavior. While most sexually differentiated features identified in brain structure and physiology result from the different endocrine milieu of adults, a few characteristics are organized by embryonic estrogens. Among them, a sex difference was identified in the number and morphology of microglia which is not associated with sex differences in the concentration/expression of neuroinflammatory molecules. The behavioral role of microglia and neuroinflammatory processes requires further investigations. Sexual differentiation of singing in zebra finches is not mediated by the same endocrine mechanisms as male copulatory behavior and "direct" genetic effect, i.e., not mediated by gonadal steroids have been identified. Epigenetic contributions have also been considered. Finally sex differences in specific aspects of singing behavior have been identified in canaries after treatment of adults with exogenous testosterone suggesting that these aspects of song are differentiated during ontogeny. Integration of quail and songbirds as alternative models has thus expanded understanding of the interplay between hormones and behavior in the control of sexual differentiation.


Assuntos
Coturnix , Diferenciação Sexual , Animais , Feminino , Masculino , Codorniz , Comportamento Sexual Animal/fisiologia , Estrogênios , Hormônios Esteroides Gonadais , Encéfalo , Testosterona , Sistemas Neurossecretores , Mamíferos
4.
Biol Sex Differ ; 14(1): 49, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528473

RESUMO

BACKGROUND: Behavioral sex differences are widespread in the animal world. These differences can be qualitative (i.e., behavior present in one sex but not the other, a true sex dimorphism) or quantitative (behavior is present at a higher rate or quality in one sex compared to the other). Singing in oscine songbirds is associated with both types of differences. In canaries, female rarely sing spontaneously but they can be induced to do so by treatments with steroids. Song in these females is, however, not fully masculinized and exhibits relatively subtle differences in quality as compared with male song. We analyzed here sex differences in syllable content and syllable use between singing male and female canaries. METHODS: Songs were recorded from three groups of castrated male and three groups of photoregressed female canaries that had received Silastic™ implants filled with testosterone (T), with T plus estradiol (E2), or left empty (control). After 6 weeks of hormone treatment, 30 songs were recorded from each of the 47 subjects. Songs were segmented and each syllable was annotated. Various metrics of syllable diversity were extracted and network analysis was employed to characterize syllable sequences. RESULTS: Male and female songs were characterized by marked sex differences related to syllable use. Compared to females, males had a larger syllable-type repertoire and their songs contained more syllable types. Network analysis of syllable sequences showed that males follow more fixed patterns of syllable transitions than females. Both sexes, however, produced song of the same duration containing the same number of syllables produced at similar rates (numbers per second). CONCLUSIONS: Under the influence of T, canaries of both sexes are able to produce generally similar vocalizations that nevertheless differ in specific ways. The development of song during ontogeny appears to be a very sophisticated process that is presumably based on genetic and endocrine mechanisms but also on specific learning processes. These data highlight the importance of detailed behavioral analyses to identify the many dimensions of a behavior that can differ between males and females.


Male canaries normally sing complex songs at high rate while females only rarely sing very simple songs. Testosterone induces active singing in both male and female canaries, but female song is still not fully masculinized by these treatments even if song duration does not differ between the sexes. We analyzed the syllable repertoire and the sequence of use for different syllables in canaries of both sexes treated with testosterone or testosterone supplemented with estradiol. Compared to females, males had a larger syllable-type repertoire and their songs contained more syllable types. Syllable transitions were also more fixed in males. Sex differences in adult singing of canaries are thus a complex mixture of differences that result from the different endocrine condition of males and females (and are thus partially reversed by administration of exogenous testosterone) and of more stable differences that presumably develop during the ontogenetic process under the influence of endocrine and genetic differences and of differential learning processes. Canary song thus represents an outstanding model system to analyze the interaction between nature and nurture in the acquisition of a sophisticated learned behavior as well as the mechanisms controlling sex differences in vocal learning and production.


Assuntos
Canários , Testosterona , Animais , Feminino , Masculino , Testosterona/farmacologia , Caracteres Sexuais , Vocalização Animal , Aprendizagem
5.
Sci Rep ; 13(1): 9010, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268657

RESUMO

The song control nucleus HVC of songbirds has emerged as a widespread model system to study adult neurogenesis and the factors that modulate the incorporation of new neurons, including seasonal state, sex differences or sex steroid hormone concentrations. However, the specific function of these new neurons born in adulthood remains poorly understood. We implemented a new procedure based on focal X-ray irradiation to deplete neural progenitors in the ventricular zone adjacent to HVC and study the functional consequences. A 23 Gy dose depleted by more than 50 percent the incorporation of BrdU in neural progenitors, a depletion that was confirmed by a significant decrease in doublecortin positive neurons. This depletion of neurogenesis significantly increased the variability of testosterone-induced songs in females and decreased their bandwidth. Expression of the immediate early gene ZENK in secondary auditory areas of the telencephalon that respond to song was also inhibited. These data provide evidence that new neurons in HVC play a role in both song production and perception and that X-ray focal irradiation represents an excellent tool to advance our understanding of adult neurogenesis.


Assuntos
Canários , Vocalização Animal , Animais , Feminino , Masculino , Canários/fisiologia , Raios X , Vocalização Animal/fisiologia , Telencéfalo/fisiologia , Percepção
6.
Horm Behav ; 154: 105394, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343444

RESUMO

We previously confirmed that effects of testosterone (T) on singing activity and on the volume of brain song control nuclei are sexually differentiated in adult canaries: females are limited in their ability to respond to T as males do. Here we expand on these results by focusing on sex differences in the production and performance of trills, i.e., rapid repetitions of song elements. We analyzed >42,000 trills recorded over a period of 6 weeks from 3 groups of castrated males and 3 groups of photoregressed females that received Silastic™ implants filled with T, T plus estradiol or left empty as control. Effects of T on the number of trills, trill duration and percent of time spent trilling were all stronger in males than females. Irrespective of endocrine treatment, trill performance assessed by vocal deviations from the trill rate versus trill bandwidth trade-off was also higher in males than in females. Finally, inter-individual differences in syrinx mass were positively correlated with specific features of trills in males but not in females. Given that T increases syrinx mass and syrinx fiber diameter in males but not in females, these data indicate that sex differences in trilling behavior are related to sex differences in syrinx mass and syrinx muscle fiber diameter that cannot be fully suppressed by sex steroids in adulthood. Sexual differentiation of behavior thus reflects organization not only of the brain but also of peripheral structures.


Assuntos
Canários , Vocalização Animal , Animais , Feminino , Masculino , Canários/fisiologia , Vocalização Animal/fisiologia , Hormônios Esteroides Gonadais/farmacologia , Testosterona/farmacologia , Encéfalo , Caracteres Sexuais
7.
bioRxiv ; 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37131795

RESUMO

We previously confirmed that effects of testosterone (T) on singing activity and on the volume of brain song control nuclei are sexually differentiated in adult canaries: females are limited in their ability to respond to T as males do. Here we expand on these results by focusing on sex differences in the production and performance of trills, i.e., rapid repetitions of song elements. We analyzed more than 42,000 trills recorded over a period of 6 weeks from 3 groups of castrated males and 3 groups of photoregressed females that received Silasticâ"¢ implants filled with T, T plus estradiol or left empty as control. Effects of T on the number of trills, trill duration and percent of time spent trilling were all stronger in males than females. Irrespective of endocrine treatment, trill performance assessed by vocal deviations from the trill rate versus trill bandwidth trade-off was also higher in males than in females. Finally, inter-individual differences in syrinx mass were positively correlated with trill production in males but not in females. Given that T increases syrinx mass and syrinx fiber diameter in males but not in females, these data indicate that sex differences in trilling behavior are related to sex differences in syrinx mass and syrinx muscle fiber diameter that cannot be fully reversed by sex steroids in adulthood. Sexual differentiation of behavior thus reflects organization not only of the brain but also of peripheral structures.

8.
Res Sq ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37090598

RESUMO

Background. Behavioral sex differences are widespread in the animal world. These differences can be qualitative (i.e., behavior present in one sex but not the other, a true sex dimorphism) or quantitative (behavior is present at a higher rate or quality in one sex compared to the other). Singing in oscine songbirds is associated with both types of differences. In canaries, female rarely sing spontaneously but they can be induced to do so by treatments with steroids. Song in these females is however not fully masculinized and exhibits relatively subtle differences in quality as compared with male song. We analyzed here sex differences in syllable content and syllable use between singing male and female canaries. Methods. Songs were recorded from 3 groups of castrated male and 3 groups of photoregressed female canaries that had received Silasticâ"¢ implants filled with testosterone (T), with T plus estradiol (E2), or left empty (control). After 6 weeks of hormone treatment, 30 songs were recorded from each of the 47 subjects. Songs were segmented and each syllable was annotated. Various metrics of syllable diversity were extracted and network analysis was employed to characterize syllable sequences. Results. Male and female songs were characterized by marked sex differences related to syllable use. Compared to females, males had a larger syllable type repertoire and their songs contained more syllable types. Network analysis of syllable sequences showed that males follow more fixed patterns of syllable transitions than females. Both sexes however produced song of the same duration containing the same number of syllables produced at similar rates (numbers per second). Conclusions. Under the influence of T canaries of both sexes are able to produce generally similar vocalizations that nevertheless differ in specific ways. The development of song during ontogeny appears to be a very sophisticated process that is presumably based on genetic and endocrine mechanisms but also on specific learning processes. These data highlight the importance of detailed behavioral analyses in order to identify the many dimensions of a behavior that can differ between males and females.

9.
Development ; 149(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239412

RESUMO

The binding of 17ß-oestradiol to oestrogen receptor alpha (ERα) plays a crucial role in the control of reproduction, acting through both nuclear and membrane-initiated signalling. To study the physiological role of membrane ERα in the reproductive system, we used the C451A-ERα mouse model with selective loss of function of membrane ERα. Despite C451A-ERα mice being described as sterile, daily weighing and ultrasound imaging revealed that homozygous females do become pregnant, allowing the investigation of the role of ERα during pregnancy for the first time. All neonatal deaths of the mutant offspring mice resulted from delayed parturition associated with failure in pre-term progesterone withdrawal. Moreover, pregnant C451A-ERα females exhibited partial intrauterine embryo arrest at about E9.5. The observed embryonic lethality resulted from altered expansion of Tpbpa-positive spiral artery-associated trophoblast giant cells into the utero-placental unit, which is associated with an imbalance in expression of angiogenic factors. Together, these processes control the trophoblast-mediated spiral arterial remodelling. Hence, loss of membrane ERα within maternal tissues clearly alters the activity of invasive trophoblast cells during placentogenesis. This previously unreported function of membrane ERα could open new avenues towards a better understanding of human pregnancy-associated pathologies.


Assuntos
Receptor alfa de Estrogênio , Trofoblastos , Animais , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Fertilidade , Humanos , Camundongos , Placenta/metabolismo , Gravidez , Progesterona/metabolismo , Receptores de Estrogênio/metabolismo , Trofoblastos/metabolismo
10.
Horm Behav ; 143: 105194, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35561543

RESUMO

Temperate-zone birds display marked seasonal changes in reproductive behaviors and the underlying hormonal and neural mechanisms. These changes were extensively studied in canaries (Serinus canaria) but differ between strains. Fife fancy male canaries change their reproductive physiology in response to variations in day length but it remains unclear whether they become photorefractory (PR) when exposed to long days and what the consequences are for gonadal activity, singing behavior and the associated neural plasticity. Photosensitive (PS) male birds that had become reproductively competent (high song output, large testes) after being maintained on short days (SD, 8 L:16D) for 6 months were divided into two groups: control birds remained on SD (SD-PS group) and experimental birds were switched to long days (16 L:8D) and progressively developed photorefractoriness (LD-PR group). During the following 12 weeks, singing behavior (quantitatively analyzed for 3 × 2 hours every week) and gonadal size (repeatedly measured by CT X-ray scans) remained similar in both groups but there was an increase in plasma testosterone and trill numbers in the LD-PR group. Day length was then decreased back to 8 L:16D for LD-PR birds, which immediately induced a cessation of song, a decrease in plasma testosterone concentration, in the volume of song control nuclei (HVC, RA and Area X), in HVC neurogenesis and in aromatase expression in the medial preoptic area. These data demonstrate that Fife fancy canaries readily respond to changes in photoperiod and display a pattern of photorefractoriness following exposure to long days that is associated with marked changes in brain and behavior.


Assuntos
Canários , Canto , Animais , Canários/fisiologia , Masculino , Fotoperíodo , Testosterona , Vocalização Animal/fisiologia
11.
Horm Behav ; 143: 105197, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597055

RESUMO

Adult treatments with testosterone (T) do not activate singing behavior nor promote growth of song control nuclei to the same extent in male and female canaries (Serinus canaria). Because T acts in part via aromatization into an estrogen and brain aromatase activity is lower in females than in males in many vertebrates, we hypothesized that this enzymatic difference might explain the sex differences seen even after exposure to the same amount of T. Three groups of castrated males and 3 groups of photoregressed females (i.e., with quiescent ovaries following exposure to short days) received either 2 empty 10 mm silastic implants, one empty implant and one implant filled with T or one implant filled with T plus one with estradiol (E2). Songs were recorded for 3 h each week for 6 weeks before brains were collected and song control nuclei volumes were measured in Nissl-stained sections. Multiple measures of song were still different in males and females following treatment with T. Co-administration of E2 did not improve these measures and even tended to inhibit some measures such as song rate and song duration. The volume of forebrain song control nuclei (HVC, RA, Area X) and the rate of neurogenesis in HVC was increased by the two steroid treatments, but remained significantly smaller in females than in males irrespective of the endocrine condition. These sex differences are thus not caused by a lower aromatization of the steroid; sex differences in canaries are probably organized either by early steroid action or by sex-specific gene regulation directly in the brain.


Assuntos
Androgênios , Canários , Androgênios/farmacologia , Animais , Encéfalo , Canários/fisiologia , Estrogênios/farmacologia , Feminino , Masculino , Caracteres Sexuais , Testosterona/farmacologia , Testosterona/fisiologia , Vocalização Animal/fisiologia
12.
J Neuroendocrinol ; 34(6): e13127, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35394094

RESUMO

In male Japanese quail, brain aromatase is crucial for the hormonal activation of sexual behaviour, but the sites producing neuro-oestrogens that are critical for these behaviours have not been completely identified. This study examined the function of aromatase expressed in several nuclei of the social behaviour network on a measure of sexual motivation known as the frequency of rhythmic cloacal sphincter movements (RCSM) and on copulatory behaviour. Sexually experienced castrated males chronically treated with testosterone were stereotaxically implanted with the aromatase inhibitor vorozole (VOR), or cholesterol as control, and tested for sexual behaviour. In experiment 1, males were implanted in the medial preoptic nucleus (POM) with VOR, a manipulation known to reduce the expression of copulatory behaviour. This experiment served as positive control, but also showed that VOR implanted in the dorsomedial or lateral portions of the POM similarly inhibits male copulatory behaviour compared to control implants. In experiments 2 to 4, males received stereotaxic implants of VOR in the periaqueductal gray (PAG), the nucleus taeniae of the amygdala (TnA) and the ventromedial nucleus of the hypothalamus (VMN), respectively. Sexual behaviour was affected only in individuals where VOR was implanted in the PAG: these males displayed significantly lower frequencies of cloacal contact movements, the last step of the copulatory sequence. Inhibition of aromatase in the TnA and VMN did not alter copulatory ability. Overall, RCSM frequency remained unaffected by VOR regardless of implantation site. Together, these results suggest that neuro-oestrogens produced in the POM contribute the most to the control of male copulatory behaviour, while aromatase expressed in the PAG might also participate to premotor aspects of male copulatory behaviour.


Assuntos
Aromatase , Coturnix , Comportamento Sexual Animal , Comportamento Social , Animais , Aromatase/metabolismo , Encéfalo/metabolismo , Coturnix/fisiologia , Estrogênios , Masculino , Área Pré-Óptica/metabolismo , Comportamento Sexual Animal/fisiologia , Testosterona/farmacologia
13.
Sci Rep ; 11(1): 20130, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635715

RESUMO

Classically, estrogens regulate male sexual behavior through effects initiated in the nucleus. However, neuroestrogens, i.e., estrogens locally produced in the brain, can act within minutes via membrane-initiated events. In male quail, rapid changes in brain aromatase activity occur after exposure to sexual stimuli. We report here that local extracellular estrogen concentrations measured by in vivo microdialysis increase during sexual interactions in a brain site- and stimulus-specific manner. Indeed, estrogen concentrations rose within 10 min of the initiation of sexual interaction with a female in the medial preoptic nucleus only, while visual access to a female led to an increase in estrogen concentrations only in the bed nucleus of the stria terminalis. These are the fastest fluctuations in local estrogen concentrations ever observed in the vertebrate brain. Their site and stimulus specificity strongly confirm the neuromodulatory function of neuroestrogens on behavior.


Assuntos
Aromatase/metabolismo , Encéfalo/metabolismo , Estrogênios/metabolismo , Área Pré-Óptica/metabolismo , Codorniz/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Masculino
14.
PLoS One ; 16(8): e0252560, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34449793

RESUMO

Songbirds learn their vocalizations during developmental sensitive periods of song memorization and sensorimotor learning. Some seasonal songbirds, called open-ended learners, recapitulate transitions from sensorimotor learning and song crystallization on a seasonal basis during adulthood. In adult male canaries, sensorimotor learning occurs each year in autumn and leads to modifications of the syllable repertoire during successive breeding seasons. We previously showed that perineuronal nets (PNN) expression in song control nuclei decreases during this sensorimotor learning period. Here we explored the causal link between PNN expression in adult canaries and song modification by enzymatically degrading PNN in HVC, a key song control system nucleus. Three independent experiments identified limited effects of the PNN degradation in HVC on the song structure of male canaries. They clearly establish that presence of PNN in HVC is not required to maintain general features of crystallized song. Some suggestion was collected that PNN are implicated in the stability of song repertoires but this evidence is too preliminary to draw firm conclusions and additional investigations should consider producing PNN degradations at specified time points of the seasonal cycle. It also remains possible that once song has been crystallized at the beginning of the first breeding season, PNN no longer play a key role in determining song structure; this could be tested by treatments with chondroitinase ABC at key steps in ontogeny. It would in this context be important to develop multiple stereotaxic procedures allowing the simultaneous bilateral degradation of PNN in several song control nuclei for extended periods.


Assuntos
Encéfalo/fisiologia , Canários/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Vocalização Animal/fisiologia , Animais , Masculino
15.
Horm Behav ; 134: 105024, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34256221

RESUMO

Enduring sex differences in the brain are established during a developmental process known as brain sexual differentiation and are mainly driven by estrogens during a critical period. In rodents, the masculinization of the preoptic area by estrogens derived from the central aromatization of testosterone depends in part on the interaction between microglia and prostaglandin E2 (PGE2), a pro-inflammatory hormone of the prostanoid subclass. In contrast, in birds, estrogens produced by females induce a demasculinization, but whether an interaction with the neuro-immune system is involved in this process is unknown. This study addressed this question by testing the effects of blockade of cyclo­oxygenases (COX), the rate-limiting enzymes for prostanoid synthesis, on embryonic microglia and the sexual differentiation of brain and behavior using the Japanese quail as an animal model. The results show that COX inhibition does not affect the behavior of females, but impairs male sexual behavior and suppresses the sex difference in microglial profiles at embryonic day 12 (E12) in the medial preoptic nucleus by increasing the number of microglia in males only. However, neither prostanoid concentrations nor PGE2 receptors differed between sexes in the hypothalamus and preoptic area (HPOA) during development. Overall, these results uncovered a potential role of prostanoids in the demasculinization of Japanese quail. Moreover, the parallel effect of COX inhibition on behavior and microglia suggests an interaction between prostanoids and microglia in brain demasculinization, thus fueling the hypothesis of a conserved role of the neuroimmune system in the organization of the brain by estrogens.


Assuntos
Coturnix , Diferenciação Sexual , Animais , Encéfalo , Feminino , Masculino , Microglia , Prostaglandina-Endoperóxido Sintases , Comportamento Sexual Animal
16.
Front Cell Dev Biol ; 9: 583555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816458

RESUMO

Song learning in zebra finches (Taeniopygia guttata) is a prototypical example of a complex learned behavior, yet knowledge of the underlying molecular processes is limited. Therefore, we characterized transcriptomic (RNA-sequencing) and epigenomic (RRBS, reduced representation bisulfite sequencing; immunofluorescence) dynamics in matched zebra finch telencephalon samples of both sexes from 1 day post hatching (1 dph) to adulthood, spanning the critical period for song learning (20 and 65 dph). We identified extensive transcriptional neurodevelopmental changes during postnatal telencephalon development. DNA methylation was very low, yet increased over time, particularly in song control nuclei. Only a small fraction of the massive differential expression in the developing zebra finch telencephalon could be explained by differential CpG and CpH DNA methylation. However, a strong association between DNA methylation and age-dependent gene expression was found for various transcription factors (i.e., OTX2, AR, and FOS) involved in neurodevelopment. Incomplete dosage compensation, independent of DNA methylation, was found to be largely responsible for sexually dimorphic gene expression, with dosage compensation increasing throughout life. In conclusion, our results indicate that DNA methylation regulates neurodevelopmental gene expression dynamics through steering transcription factor activity, but does not explain sexually dimorphic gene expression patterns in zebra finch telencephalon.

17.
Behav Brain Res ; 410: 113315, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33901434

RESUMO

Aromatase converts androgens into estrogens in the brain of vertebrates including humans. This enzyme is also expressed in other tissues where its action may result in negative effects on human health (e.g., promotion of tumor growth). To prevent these effects, aromatase inhibitors were developed and are currently used to block human estrogen-dependent tumors. In vertebrates including quail, aromatase is expressed in a highly conserved set of interconnected brain nuclei known as the social behavior network. This network is directly implicated in the expression of a large range of social behaviors. The primary goal of this study was to characterize in Japanese quail the potential impact of brain aromatase on sexual behavior, aggressiveness and social motivation (i.e., tendency to approach and stay close to conspecifics). An additional goal was to test the feasibility and effectiveness of long-term delivery of an aromatase inhibitor directly into the third ventricle via Alzet™ osmotic minipumps using male sexual behavior as the aromatase dependent measure. We demonstrate that this mode of administration results in the strongest inhibition of both copulatory behavior and sexual motivation ever observed in this species, while other social behaviors were variably affected. Sexual motivation and the tendency to approach a group of conspecifics including females clearly seem to depend on brain aromatase, but the effects of central estrogen production on aggressive behavior and on the motivation to approach males remain less clear.


Assuntos
Agressão , Inibidores da Aromatase/farmacologia , Aromatase , Encéfalo , Comportamento Sexual Animal , Comportamento Social , Terceiro Ventrículo/efeitos dos fármacos , Agressão/efeitos dos fármacos , Agressão/fisiologia , Animais , Aromatase/efeitos dos fármacos , Aromatase/metabolismo , Inibidores da Aromatase/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Coturnix , Injeções Intraventriculares , Masculino , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia
18.
Horm Behav ; 125: 104827, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32735801

RESUMO

Estrogens play a key role in the sexual differentiation of the brain and behavior. While early estrogen actions exert masculinizing effects on the brain of male rodents, a diametrically opposite effect is observed in birds where estrogens demasculinize the brain of females. Yet, the two vertebrate classes express similar sex differences in the brain and behavior. Although ERα is thought to play a major role in these processes in rodents, the role of ERß is still controversial. In birds, the identity of the estrogen receptor(s) underlying the demasculinization of the female brain remains unclear. The aim of the present study was thus to determine in Japanese quail the effects of specific agonists of ERα (propylpyrazole triol, PPT) and ERß (diarylpropionitrile, DPN) administered at the beginning of the sensitive period (embryonic day 7, E7) on the sexual differentiation of male sexual behavior and on the density of vasotocin-immunoreactive (VT-ir) fibers, a known marker of the organizational action of estrogens on the quail brain. We demonstrate that estradiol benzoate and the ERß agonist (DPN) demasculinize male sexual behavior and decrease the density of VT-ir fibers in the medial preoptic nucleus and the bed nucleus of the stria terminalis, while PPT has no effect on these measures. These results clearly indicate that ERß, but not ERα, is involved in the estrogen-induced sexual differentiation of brain and sexual behavior in quail.


Assuntos
Encéfalo/anatomia & histologia , Coturnix/fisiologia , Receptor beta de Estrogênio/fisiologia , Comportamento Sexual Animal , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Coturnix/metabolismo , Estradiol/análogos & derivados , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/agonistas , Estrogênios/farmacologia , Feminino , Masculino , Nitrilas/farmacologia , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Propionatos/farmacologia , Caracteres Sexuais , Diferenciação Sexual/efeitos dos fármacos , Comportamento Sexual Animal/efeitos dos fármacos , Vasotocina/farmacologia
19.
Eur J Neurosci ; 52(3): 2963-2981, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32349174

RESUMO

Testosterone aromatization into estrogens in the preoptic area (POA) is critical for the activation of male sexual behavior in many vertebrates. Yet, the cellular mechanisms mediating actions of neuroestrogens on sexual behavior remain largely unknown. We investigated in male and female Japanese quail by dual-label fluorescent in situ hybridization (FISH) whether aromatase-positive (ARO) neurons express glutamic acid decarboxylase 67 (GAD67), the rate-limiting enzyme in GABA biosynthesis. ARO cells and ARO cells double labeled with GAD67 (ARO-GAD67) were counted at standardized locations in the medial preoptic nucleus (POM) and the medial bed nucleus of the stria terminalis (BST) to produce three-dimensional distribution maps. Overall, males had more ARO cells than females in POM and BST. The number of double-labeled ARO-GAD67 cells was also higher in males than in females and greatly varied as a function of the specific position in these nuclei. Significant sex differences were however present only in the most caudal part of POM. Although both ARO and GAD67 were expressed in the VMN, no colocalization between these markers was detected. Together, these data show that a high proportion of estrogen-synthesizing neurons in POM and BST are inhibitory and the colocalization of GAD67 with ARO exhibits a high degree of anatomical specificity as well as localized sex differences. The fact that many preoptic ARO neurons project to the periaqueductal gray in male quail suggests possible mechanisms through which locally produced estrogens could activate male sexual behavior.


Assuntos
Aromatase , Coturnix , Animais , Aromatase/genética , Aromatase/metabolismo , Encéfalo/metabolismo , Coturnix/metabolismo , Feminino , Hibridização in Situ Fluorescente , Masculino , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Codorniz/metabolismo , Comportamento Sexual Animal
20.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32169884

RESUMO

Songbirds are a powerful model to study vocal learning given that aspects of the underlying behavioral and neurobiological mechanisms are analogous in many ways to mechanisms involved in speech learning. Perineuronal nets (PNNs) represent one of the mechanisms controlling the closing of sensitive periods for vocal learning in the songbird brain. In zebra finches, PNN develop around parvalbumin (PV)-expressing interneurons in selected song control nuclei during ontogeny and their development is delayed if juveniles are deprived of a tutor. However, song learning in zebra finches takes place during a relatively short period of development, and it is difficult to determine whether PNN development correlates with the end of the sensory or the sensorimotor learning period. Canaries have a longer period of sensorimotor vocal learning, spanning over their first year of life so that it should be easier to test whether PNN development correlates with the end of sensory or sensorimotor vocal learning. Here, we quantified PNN around PV-interneurons in the brain of male canaries from hatching until the first breeding season and analyzed in parallel the development of their song. PNN development around PV-interneurons specifically took place and their number reached its maximum around the end of the sensorimotor learning stage, well after the end of sensory vocal learning, and correlated with song development. This suggests that PNN are specifically involved in the termination of the sensitive period for sensorimotor vocal learning.


Assuntos
Tentilhões , Aves Canoras , Animais , Canários , Masculino , Plasticidade Neuronal , Parvalbuminas , Vocalização Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...