Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(8): 2553-2560, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363554

RESUMO

Molecular electronics targets tiny devices exploiting the electronic properties of the molecular orbitals, which can be tailored and controlled by the chemical structure and configuration of the molecules. Many functional devices have been experimentally demonstrated; however, these devices were operated in the low-frequency domain (mainly dc to MHz). This represents a serious limitation for electronic applications, although molecular devices working in the THz regime have been theoretically predicted. Here, we experimentally demonstrate molecular THz switches at room temperature. The devices consist of self-assembled monolayers of molecules bearing two conjugated moieties coupled through a nonconjugated linker. These devices exhibit clear negative differential conductance behaviors (peaks in the current-voltage curves), as confirmed by ab initio simulations, which were reversibly suppressed under illumination with a 30 THz wave. We analyze how the THz switching behavior depends on the THz wave properties (power and frequency), and we benchmark that these molecular devices would outperform actual THz detectors.

2.
Adv Sci (Weinh) ; 11(13): e2309115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38251412

RESUMO

Since the first applications of nanohoops in organic electronics appear promising, the time has come to go deeper into their rational design in order to reach high-efficiency materials. To do so, systematic studies dealing with the incorporation of electron-rich and/or electron-poor functional units on nanohoops have to be performed. Herein, the synthesis, the electrochemical, photophysical, thermal, and structural properties of two [4]cyclo-2,7-carbazoles, [4]C-Py-Cbz, and [4]C-Pm-Cbz, possessing electron-withdrawing units on their nitrogen atoms (pyridine or pyrimidine) are reported. The synthesis of these nanohoops is first optimized and a high yield above 50% is reached. Through a structure-properties relationship study, it is shown that the substituent has a significant impact on some physicochemical properties (eg HOMO/LUMO levels) while others are kept unchanged (eg fluorescence). Incorporation in electronic devices shows that the most electrically efficient Organic Field-Effect transistors are obtained with [4]C-Py-Cbz although this compound does not present the best-organized semiconductor layer. These experimental data are finally confronted with the electronic couplings between the nanohoops determined at the DFT level and have highlighted the origin in the difference of charge transport properties. [4]C-Py-Cbz has the advantage of a more 2D-like transport character than [4]C-Pm-Cbz, which alleviates the impact of defects and structural organization.

3.
Chem Mater ; 36(1): 585-595, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222937

RESUMO

Understanding structure and polymorphism is relevant for any organic device optimization, and it is of particular relevance in 7-decyl-2-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) since high carrier mobility in Ph-BTBT-10 thin films has been linked to the structural transformation from the metastable thin-film phase to the thermodynamically stable bilayer structure via thermal annealing. We combine here a systematic nanoscale morphological analysis with local Kelvin probe force microcopy (KPFM) that demonstrates the formation of a polar polymorph in thin films as an intermediate structure for thicknesses lower than 20 nm. The polar structure develops with thickness a variable amount of structural defects in the form of individual flipped molecules (point defects) or sizable polar domains, and evolves toward the reported nonpolar thin-film phase. The direct experimental evidence is supported by electronic structure density functional theory calculations. The structure of the film has dramatic effects on the electronic properties, leading to a decrease in the film work function (by up to 1 eV) and a considerable broadening of the occupied molecular orbitals, attributed to electrostatic disorder. From an advanced characterization point of view, KPFM stands out as a valuable tool for evaluating electrostatic disorder and the conceivable emergence of polar polymorphs in organic thin films. The emergence of polar assemblies introduces a critical consideration for other asymmetric BTBT derivatives, which may be pivotal to understanding the structure-property relationships in organic field-effect transistors (OFETs). A precise determination of any polar assemblies close to the dielectric interface is critical for the judicious design and upgrading of high-performance OFETs.

4.
Nanoscale ; 16(5): 2452-2465, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224337

RESUMO

ZrN nanofluids may exhibit unique optoelectronic properties because of the matching of the solar spectrum with interband transitions and localized surface plasmon resonance (LSPR). Nevertheless, these nanofluids have scarcely been investigated, mainly because of the complexity of the current synthetic routes that involve aggressive chemicals and high temperatures. This work aims to validate reactive dc magnetron sputtering of zirconium in Ar/N2 as an environmentally benign, annealing-free method to produce 22 nm-sized, highly crystalline, stoichiometric, electrically conductive, and plasmonic ZrN nanoparticles (NPs) of cubic shape and to load them into vacuum-compatible liquids of different chemical compositions (polyethylene glycol (PEG), paraffin, and pentaphenyl trimethyl trisiloxane (PTT)) in one step. The nanofluids demonstrate LSPR in the red/near-IR range that gives them a bluish color in transmittance. The nanofluids also demonstrate complex photoluminescence behavior such that ZrN NPs enhance the photoluminescence (PL) intensity of paraffin and PEG, whereas the PL of PTT remains almost invariable. Based on DFT calculations, different energetic barriers to charge transfer between ZrN and the organic molecules are suggested as the main factors that influence the observed optoelectronic response. Overall, our study provides a novel approach to the synthesis of transition metal nitride nanofluids in an environmentally friendly manner, deepens the understanding of the interactions between ZrN and organic molecules, and unveils new optoelectronic phenomena in such systems.

5.
Cryst Growth Des ; 23(11): 8124-8131, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37937189

RESUMO

This work provides a comprehensive illustration of a crystalline melt memory effect recorded for three solvates of the 2,7-bis(2-(2-methoxyethoxy)ethoxy)benzo[b]benzo[4,5] thieno[2,3-d]thiophene (OEG-BTBT) molecule with dichloromethane (DCM) molecules. Combined optical microscopy and X-ray diffraction measurements at different temperatures are used to get an overview of the structural and morphological properties like melting points, isotropic transition temperatures, induction times, and crystallization kinetics of the three forms. An outstanding observation is made upon annealing the three polymorphs at temperatures well above their respective melting points as well as above the optical clearance temperature. After cooling back to room temperature, recrystallization results in the formation of the initial phase present before the annealing process. This melt memory effect is observed for all three solvates. These observations can be correlated to the strong interaction between the DCM molecules and the oligoethylene glycol side chains, even in the molten state. This conclusion rationalizes the experimental observation made upon solvent vapor annealing of the crystalline sample with DCM, which unambiguously transformed the system into a disordered state.

6.
Chemistry ; 29(70): e202303168, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37796081

RESUMO

Storing solar energy is a key challenge in modern science. MOlecular Solar Thermal (MOST) systems, in particular those based on azobenzene switches, have received great interest in the last decades. The energy storage properties of azobenzene (t1/2 <4 days; ΔH~270 kJ/kg) must be improved for future applications. Herein, we introduce peptoids as programmable supramolecular scaffolds to improve the energy storage properties of azobenzene-based MOST systems. We demonstrate with 3-unit peptoids bearing a single azobenzene chromophore that dynamics of the MOST systems can be tuned depending on the anchoring position of the photochromic unit on the macromolecular backbone. We measured a remarkable increase of the half-life of the metastable form up to 14 days at 20 °C for a specific anchoring site, significantly higher than the isolated azobenzene moiety, thus opening new perspectives for MOST development. We also highlight that liquid chromatography coupled to mass spectrometry does not only enable to monitor the different stereoisomers during the photoisomerization process as traditionally done, but also allows to determine the thermal back-isomerization kinetics.

7.
Adv Sci (Weinh) ; 10(26): e2301914, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37424043

RESUMO

Chiral molecules are known to behave as spin filters due to the chiral induced spin selectivity (CISS) effect. Chirality can be implemented in molecular semiconductors in order to study the role of the CISS effect in charge transport and to find new materials for spintronic applications. In this study, the design and synthesis of a new class of enantiopure chiral organic semiconductors based on the well-known dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene (DNTT) core functionalized with chiral alkyl side chains is presented. When introduced in an organic field-effect transistor (OFET) with magnetic contacts, the two enantiomers, (R)-DNTT and (S)-DNTT, show an opposite behavior with respect to the relative direction of the magnetization of the contacts, oriented by an external magnetic field. Each enantiomer displays an unexpectedly high magnetoresistance over one preferred orientation of the spin current injected from the magnetic contacts. The result is the first reported OFET in which the current can be switched on and off upon inversion of the direction of the applied external magnetic field. This work contributes to the general understanding of the CISS effect and opens new avenues for the introduction of organic materials in spintronic devices.

8.
Mater Horiz ; 10(10): 4415-4422, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37476933

RESUMO

The discovery of new polymorphs opens up unique applications for molecular materials since their physical properties are predominantly influenced by the crystal structure type. The deposition of molecules at surfaces offers great potential in the variation of the crystallization conditions, thereby allowing access to unknown polymorphs. With our surface crystallization approach, four new phases are found for an oligoethylene glycol-benzothienobenzothiophene molecule, and none of these phases could be identified via classical polymorph screening. The corresponding crystal lattices of three of the new phases were obtained via X-ray diffraction (XRD). Based on the volumetric considerations together with X-ray fluorescence and Raman spectroscopy data, the phases are identified as solvates containing one, two or three solvent molecules per molecule. The strong interaction of dichloromethane with the oligoethylene glycol side chains of the molecules may be responsible for the formation of the solvates. Temperature-dependent XRD reveals the low thermal stability of the new phases, contrary to the thermodynamically stable bulk form. Nevertheless, the four solvates are stable under ambient conditions for at least two years. This work illustrates that defined crystallization at surfaces enables access to multiple solvates of a given material through precise and controlled variations in the crystallization kinetics.

9.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240061

RESUMO

Three new tetraphenylethene (TPE) push-pull chromophores exhibiting strong intramolecular charge transfer (ICT) are described. They were obtained via [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) click reactions on an electron-rich alkyne-tetrafunctionalized TPE (TPE-alkyne) using both 1,1,2,2-tetracyanoethene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as electron-deficient alkenes. Only the starting TPE-alkyne displayed significant AIE behavior, whereas for TPE-TCNE, a faint effect was observed, and for TPE-TCNQ and TPE-F4-TCNQ, no fluorescence was observed in any conditions. The main ICT bands that dominate the UV-Visible absorption spectra underwent a pronounced red-shift beyond the near-infrared (NIR) region for TPE-F4-TCNQ. Based on TD-DFT calculations, it was shown that the ICT character shown by the compounds exclusively originated from the clicked moieties independently of the nature of the central molecular platform. Photothermal (PT) studies conducted on both TPE-TCNQ and TPE-F4-TCNQ in the solid state revealed excellent properties, especially for TPE-F4-TCNQ. These results indicated that CA-RE reaction of TCNQ or F4-TCNQ with donor-substituted are promising candidates for PT applications.


Assuntos
Alcinos , Nitrilas , Reação de Cicloadição
10.
Chemistry ; 29(41): e202300934, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36994806

RESUMO

In the field of π-conjugated nanohoops, the size of the macrocycle has a strong impact on its structural characteristics, which in turn affect its electronic properties. In this work, we report the first experimental investigations linking the size of a nanohoop to its charge transport properties, a key property in organic electronics. We describe the synthesis and study of the first example of a cyclocarbazole possessing five constituting building units, namely [5]-cyclo-N-butyl-2,7-carbazole, [5]C-Bu-Cbz. By comparison with a shorter analogue, [4]-cyclo-N-butyl-2,7-carbazole, [4]C-Bu-Cbz, we detail the photophysical, electrochemical, morphological and charge transport properties, highlighting the key role played by the hoop size. In particular, we show that the saturated field effect mobility of [5]C-Bu-Cbz is four times higher than that of its smaller analogue [4]C-Bu-Cbz (4.22×10-5 vs 1.04×10-5  cm2 V-1 s-1 ). However, the study of the other organic field-effect transistor characteristics (threshold voltage VTH and subthreshold slope SS) suggest that a small nanohoop is beneficial for good organization of the molecules in thin films, whereas a large one increases the density of structural defects, and hence of traps for the charge carriers. The present findings are of interest for the further development of nanohoops in electronics.

11.
Nanoscale Adv ; 5(3): 955-969, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756512

RESUMO

Since the time of Faraday's experiments, the optical response of plasmonic nanofluids has been tailored by the shape, size, concentration, and material of nanoparticles (NPs), or by mixing different types of NPs. To date, water-based liquids have been the most extensively investigated host media, while polymers, such as poly(ethylene glycol) (PEG), have frequently been added to introduce repulsive steric interactions and protect NPs from agglomeration. Here, we introduce an inverse system of non-aqueous nanofluids, in which Ag and Cu NPs are dispersed in PEG (400 g mol-1), with no solvents or chemicals involved. Our single-step approach comprises the synthesis of metal NPs in the gas phase using sputtering-based gas aggregation cluster sources, gas flow transport of NPs, and their deposition (optionally simultaneous) on the PEG surface. Using computational fluid dynamics simulations, we show that NPs diffuse into PEG at an average velocity of the diffusion front of the order of µm s-1, which is sufficient for efficient loading of the entire polymer bulk. We synthesize yellow Ag/PEG, green Cu/PEG, and blue Ag/Cu/PEG nanofluids, in which the color is given by the position of the plasmon resonance. NPs are prone to partial agglomeration and sedimentation, with a slower kinetics for Cu. Density functional theory calculations combined with UV-vis data and zeta-potential measurements prove that the surface oxidation to Cu2O and stronger electrostatic repulsion are responsible for the higher stability of Cu NPs. Adopting the De Gennes formalism, we estimate that PEG molecules adsorb on the NP surface in mushroom coordination, with the thickness of the adsorbed layer L < 1.4 nm, grafting density σ < 0.20, and the average distance between the grafted chains D > 0.8 nm. Such values provide sufficient steric barriers to retard, but not completely prevent, agglomeration. Overall, our approach offers an excellent platform for fundamental research on non-aqueous nanofluids, with metal-polymer and metal-metal interactions unperturbed by the presence of solvents or chemical residues.

12.
Mass Spectrom Rev ; 42(4): 1129-1151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34747528

RESUMO

An increasing number of studies take advantage of ion mobility spectrometry (IMS) coupled to mass spectrometry (IMS-MS) to investigate the spatial structure of gaseous ions. Synthetic polymers occupy a unique place in the field of IMS-MS. Indeed, due to their intrinsic dispersity, they offer a broad range of homologous ions with different lengths. To help rationalize experimental data, various theoretical approaches have been described. First, the study of trend lines is proposed to derive physicochemical and structural parameters. However, the evaluation of data fitting reflects the overall behavior of the ions without reflecting specific information on their conformation. Atomistic simulations constitute another approach that provide accurate information about the ion shape. The overall scope of this review is dedicated to the synergy between IMS-MS and theoretical approaches, including computational chemistry, demonstrating the essential role they play to fully understand/interpret IMS-MS data.

13.
ACS Appl Mater Interfaces ; 14(40): 46086-46094, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36191090

RESUMO

Organic semiconductors combine flexible tailoring of their optoelectronic properties by synthetic means with strong light-matter coupling, which is advantageous for organic electronic device applications. Although spatially selective deposition has been demonstrated, lateral patterning of organic films with simultaneous control of molecular and crystalline orientation is lacking as traditional lithography is not applicable. Here, a new patterning approach based on surface-localized F-centers (halide vacancies) generated by electron irradiation of alkali halides is presented, which allows structural control of molecular adlayers. Combining optical and atomic force microscopy, X-ray diffraction, and density functional theory (DFT) calculations, it is shown that dinaphthothienothiophene (DNTT) molecules adopt an upright orientation on pristine KCl surfaces, while the F-centers stabilize a recumbent orientation, and that these orientations are maintained in thicker films. This specific nucleation results also in different crystallographic morphologies, namely, densely packed islands and jagged fibers, each epitaxially aligned on the KCl surface. Spatially selective surface irradiation can also be used to create patterns of F-centers and thus laterally patterned DNTT films, which can be further transferred to any (including elastomer) substrate due to the water solubility of the alkali halide growth templates.

14.
Nanoscale Adv ; 4(2): 457-466, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36132702

RESUMO

We report on the first systematic transport study of alkynyl-ended oligophenyl-diethynyl (OPA) single-molecule junctions with direct Au-C anchoring scheme at low temperature using the mechanically controlled break junction technique. Through quantitative statistical analysis of opening traces, conductance histograms and density functional theory studies, we identified different types of junctions, classified by their conductance and stretching behavior, for OPA molecules between Au electrodes with two to four phenyl rings. We performed inelastic electron tunneling spectroscopy and observed the excitation of Au-C vibrational modes confirming the existence of Au-C bonds at low temperature and compared the stability of molecule junctions upon mechanical stretching. Our findings reveal the huge potential for future functional molecule transport studies at low temperature using alkynyl endgroups.

15.
Angew Chem Int Ed Engl ; 61(35): e202207204, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35729063

RESUMO

To date, all efficient host materials reported for phosphorescent OLEDs (PhOLEDs) are constructed with heteroatoms, which have a crucial role in the device performance. However, it has been shown in recent years that the heteroatoms not only increase the design complexity but can also be involved in the instability of the PhOLED, which is nowadays the most important obstacle to overcome. Herein, we design pure aromatic hydrocarbon materials (PHC) as very efficient hosts in high-performance white and blue PhOLEDs. With EQE of 27.7 %, the PHC-based white PhOLEDs display similar efficiency as the best reported with heteroatom-based hosts. Incorporated as a host in a blue PhOLED, which are still the weakest links of the technology, a very high EQE of 25.6 % is reached, surpassing, for the first time, the barrier of 25 % for a PHC and FIrpic blue emitter. This performance shows that the PHC strategy represents an effective alternative for the future development of the OLED industry.

16.
Nanoscale ; 14(15): 5725-5742, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35348166

RESUMO

Two new photo-switchable terphenylthiazole molecules are synthesized and self-assembled as monolayers on Au and on ferromagnetic Co electrodes. The electron transport properties probed by conductive atomic force microscopy in ultra-high vacuum reveal a larger conductance of the light-induced closed (c) form than for the open (o) form. We report an unprecedented conductance ratio of up to 380 between the closed and open forms on Co for the molecule with the anchoring group (thiol) on the side of the two N atoms of the thiazole unit. This result is rationalized by Density Functional Theory (DFT) calculations coupled to the Non-Equilibrium Green's function (NEGF) formalism. These calculations show that the high conductance in the closed form is due to a strong electronic coupling between the terphenylthiazole molecules and the Co electrode that manifests by a resonant transmission peak at the Fermi energy of the Co electrode with a large broadening. This behavior is not observed for the same molecules self-assembled on gold electrodes. These high conductance ratios make these Co-based molecular junctions attractive candidates to develop and study switchable molecular spintronic devices.

17.
Adv Sci (Weinh) ; 9(19): e2105674, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35297223

RESUMO

The charge transport of crystalline organic semiconductors is limited by dynamic disorder that tends to localize charges. It is the main hurdle to overcome in order to significantly increase charge carrier mobility. An innovative design that combines a chemical structure based on sulfur-rich thienoacene with a solid-state herringbone (HB) packing is proposed and the synthesis, physicochemical characterization, and charge transport properties of two new thienoacenes bearing a central tetrathienyl core fused with two external naphthyl rings: naphtho[2,3-b]thieno-[2''',3''':4'',5'']thieno[2″,3″:4',5']thieno[3',2'-b]naphtho[2,3-b]thiophene (DN4T) and naphtho[1,2-b]thieno-[2''',3''':4'',5'']thieno[2'',3'':4',5']thieno[3',2'-b]naphtho[1,2-b]thiophene are presented. Both compounds crystallize with a HB pattern structure and present transfer integrals ranging from 33 to 99 meV (for the former) within the HB plane of charge transport. Molecular dynamics simulations point toward an efficient resilience of the transfer integrals to the intermolecular sliding motion commonly responsible for strong variations of the electronic coupling in the crystal. Best device performances are reached with DN4T with hole mobility up to µ = 2.1 cm2 V-1 s-1 in polycrystalline organic field effect transistors, showing the effectiveness of the electronic coupling enabled by the new aromatic core. These promising results pave the way to the design of high-performing materials based on this new thienoacene, notably through the introduction of alkyl side-chains.

18.
Biomacromolecules ; 23(3): 1138-1147, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35041390

RESUMO

Although N-(S)-phenylethyl peptoids are known to adopt helical structures in solutions, the corresponding positively charged ions lose their helical structure during the transfer from the solution to the gas phase due to the so-called charge solvation effect. We, here, considered negatively charged peptoids to investigate by ion mobility spectrometry-mass spectrometry whether the structural changes described in the positive ionization mode can be circumvented in the negative mode by a fine-tuning of the peptoid sequence, that is, by positioning the negative charge at the positive side of the helical peptoid macrodipole. N-(S)-(1-carboxy-2-phenylethyl) (Nscp) and N-(S)-phenylethyl (Nspe) were selected as the negative charge carrier and as the helix inductor, respectively. We, here, report the results of a joint theoretical and experimental study demonstrating that the structures adopted by the NspenNscp anions remain compactly folded in the gas phase for chains containing up to 10 residues, whereas no evidence of the presence of a helical structure was obtained, even if, for selected sequences and lengths, different gas phase conformations are detected.


Assuntos
Peptoides , Ânions , Espectrometria de Mobilidade Iônica , Íons , Conformação Molecular , Peptoides/química
19.
ACS Sustain Chem Eng ; 9(44): 14946-14958, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34777926

RESUMO

Increasing energy autonomy and lowering dependence on lithium-based batteries are more and more appealing to meet our current and future needs of energy-demanding applications such as data acquisition, storage, and communication. In this respect, energy harvesting solutions from ambient sources represent a relevant solution by unravelling these challenges and giving access to an unlimited source of portable/renewable energy. Despite more than five decades of intensive study, most of these energy harvesting solutions are exclusively designed from ferroelectric ceramics such as Pb(Zr,Ti)O3 and/or ferroelectric polymers such as polyvinylidene fluoride and its related copolymers, but the large implementation of these piezoelectric materials into these technologies is environmentally problematic, related with elevated toxicity and poor recyclability. In this work, we reveal that fully biobased non-isocyanate polyurethane-based materials could afford a sustainable platform to produce piezoelectric materials of high interest. Interestingly, these non-isocyanate polyurethanes (NIPUs) with ferroelectric properties could be successfully synthesized using a solvent-free reactive extrusion process on the basis of an aminolysis reaction between resorcinol bis-carbonate and different diamine extension agents. Structure-property relationships were established, indicating that the ferroelectric behavior of these NIPUs depends on the nanophase separation inside these materials. These promising results indicate a significant potential for fulfilling the requirements of basic connected sensors equipped with low-power communication technologies.

20.
ACS Appl Mater Interfaces ; 13(47): 56404-56412, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783518

RESUMO

A number of factors contribute to orbital energy alignment with respect to the Fermi level in molecular tunnel junctions. Here, we report a combined experimental and theoretical effort to quantify the effect of metal image potentials on the highest occupied molecular orbital to Fermi level offset, εh, for molecular junctions based on self-assembled monolayers (SAMs) of oligophenylene ethynylene dithiols (OPX) on Au. Our experimental approach involves the use of both transport and photoelectron spectroscopy to extract the offsets, εhtrans and εhUPS, respectively. We take the difference in these quantities to be the image potential energy eVimage. In the theoretical approach, we use density functional theory (DFT) to calculate directly eVimage between positive charge on an OPX molecule and the negative image charge in the Au. Both approaches yield eVimage ∼ -0.1 eV per metal contact, meaning that the total image potential energy is ∼-0.2 eV for an assembled junction with two Au contacts. Thus, we find that the total image potential energy is 25-30% of the total offset εh, which means that image charge effects are significant in OPX junctions. Our methods should be generally applicable to understanding image charge effects as a function of molecular size, for example, in a variety of SAM-based junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...